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Abstract

In the last decades, a lot of research effort has been made in the field of biometric recognition. More
precisely, there are many experiments which are conducted in upcoming biometrics such as ears. Ear
is one of the new comers in biometric recognition techniques and until today it has not been decided
whether the ear can be a good candidate for a human biometric. This paper, presents an in depth
survey in the area of ear biometric, it summarizes the most important recognition methods for ears
and it discusses their performance. Furthermore, it makes a comparative assessment with respect to
other biometric modalities. Finally, the paper concludes if the ear recognition methods are at this point

mature enough, to be used in real life applications.

1 Introduction

Biometrics is the science of identifying or wverify-
ing the identity of a person based on physiologi-
cal or behavioral characteristics. Nowadays, there
are different ways to define or verify the identity of
someone. A person can use possessions like cards,
badges and keys, knowledge like userid, passwords,
and PINs and also biometrics such as fingerprint,
ear, face and iris. Biometrics, offer much higher
accuracy than the traditional methods. Possession
can be lost, forgot or replicated easily and knowl-
edge can be forgotten. Both possession and knowl-
edge, can be stolen or shared with other people. In
biometrics, these drawbacks do exist, but in a much
smaller scale.[1] An ideal biometric must be univer-
sal, unique, permanent and collectable. However, in
practice a biometric with characteristics that sat-
isfy all these requirements maybe is not suitable for
real life applications. In biometric systems, there
are additional requirements that must be consid-
ered such as performance, acceptability and circum-
vention. Moreover, if the biometric system is used
for authentication purposes, then there are several
viewpoints that must be taken into account be-
fore the implementation starts, such as the conve-
nience,accuracy, availability and cost of the system.
12, 3, 4]

Ear seems to have some advantages over the
other recognition technologies. Its structure is not

changing during the lifetime of an adult and is
unaffected by facial expressions. It is located on
the side of the head which makes detection easier
because the immediate background is predictable,
unlike that of the face. Data collection is conve-
nient in comparison to other biometric characteris-
tics and during the measurement procedure will not
cause anxiety. Furthermore, ear is missing some
unwanted properties that can lead to an easy repli-
cation (i.e. gummy fingerprints). Finally, it is de-
tectable and easily captured from a long distance
and its appearance it is not altered by make-up,
spectacles, beards or glasses, although, it is often
occluded by hair and earrings.

This paper, in section 2 addresses the most im-
portant ear recognition methods and the results re-
ported on their performance, from contucted ex-
periments. In section 3, a comparative assessment
with respect to other biometric characteristics is
presented and an evaluation about the discussed
ear methods is made. In section 4, the paper con-
cludes whether the ear recognition methods are ma-
ture enough at this point, to be used in every day
applications.

2 Ear Recognition Methods

In general, the goal in an identification method is
to be able to verify successfully, if the biometric



extracted from a subject, sufficiently matches the
previous acquired biometric for that subject. Since
the subject and environment change over time, a
certain tolerance in the matching criterion must be
permitted. This tolerance can be defined in terms
of the False Reject Rate (FRR) and the False Ac-
ceptance Rate (FAR) exhibited by the system. A
system is usually designed to be tunable to min-
imize either the FAR or the FRR depending the
security level required. If the system that we cre-
ate aims on recognition, then the problem is really
harder than that of identification, since the system
must determine whether the subject’s identity can
be verified against any previously enrolled subject.
Until now, human ear shape is not commonly used
in applications. Through the last decades, different
scientific methods for ear identification have been
developed. In this section, the most important and
popular ear recognition techniques are described.

2.1 TIannarelli’s System

The first attempt of building a classification system
for ear shapes was made by Alfred Iannarelli.[5] He
has made two large scale ear identification studies.
The first study, compared 10,000 ears drawn from
a randomly selected sample and the second study
examined identical twins and triplets. In both stud-
ies, all examined ears were found to be unique,
though identical multiple birth siblings had simi-
lar, but not identical ear structures. Iannarelli’s
system was based on twelve measurements taken
on ear photographs.

Figure 1: ”Iannarelli’s System” - (a) Anatomy, (b)
Measurements : 1.Helix rim, 2.Lobule, 3.Anti-Helix,
4.Concha, 5.Tragus, 6.Antitragus, 7. Crus of Helix,
8.Traingular Fossa, 9.Incisure Intertragica.

The measurements were taken on specially
aligned and normalized photograph of the right ear.
While developing the negative, the image was pro-
jected to fit on a predefined easel. The distance

between each of the numbered areas was measured
and then an integer distance value, was assigned.
(Fig. 1) However, later, it was discovered that this
method is not suitable for machine vision because
of the difficulty of localizing the anatomical points.
If the first point is not defined accurately, none of
the measurements is useful. Iannarelli himself, had
also recognized this weakness.[6, 7, 8]

2.2 Voronoi Diagrams

M.Burge and W.Burger introduced a graph match-
ing method for passive ear identification that was
based on Voronoi Diagrams (App. A.3). This
method, avoids the Iannarelli’s System problem of
localizing anatomical points and the weakness of
basing all subsequent feature measurements on a
single point. In practice, each subject’s ear is mod-
eled as an adjacency graph. Then, using curve seg-
ments, which is an essential technique to create
graphics that appear smooth at fixed resolutions,
the Voronoi diagram is built.[§]

Figure 2:
Diagrams

”Neighborhood Graphs based on Voronoi

The algorithm is based on the following steps:

e Step 1 - Acquisition: A 300x500 grayscale im-
age is taken of the subject’s head using a cam-
era. After that, the location of the ear is found.

e Step 2 - Localization: The ear is located
by using a simple deformable contours on a
Gaussian pyramid representation of the image
gradient.[9]

e Step 8 - Fdge extraction: FEdges are computed
using the Canny operator (App. A.4) and
thresholding with hysteresis using upper and
lower thresholds of 46 and 20 (Fig. 2b).

e Step 4 - Curve extraction: Edge relaxation
is used to form larger curve segments, and
to remove the remaining small curve seg-
ments. Performing an identification at this
stage, was proved unreliable due to differences
in lighting and positioning, so in order to



achieve invariance under affine transformations
a Voronoi neighborhood graph of the curves is
constructed.

e Step 5 - Graph model: A generalized Voronoi
diagram of the curves is built and a neighbor-
hood graph is extracted (Fig. 2c).

Using the above steps the result is a high FRR,
due to variations in the graph models and underly-
ing differences in the spatial relations of the ex-
tracted curves. M.Burge and W.Burger, in or-
der to improve the FRR, proposed a devised novel
match algorithm which took into account the erro-
neous curve segments that could occur in the ear
image because of lighting, shadowing and occlu-
sion. Nevertheless, the problem of occlusion by hair
was identified as a major obstacle for this method
and the possible solution of using thermograms was
proposed.[8]

2.3 Compression Networks

In 1999, B. Moreno experimented with two differ-
ent approaches.[1] The first approach, was based in
the detection and analysis of facial features such
as eye distance and chin’s angle. The second ap-
proach, avoided using feature extraction and pro-
cessed faces as general images with the appropriate
tools (i.e. neural networks). One of the three clas-
sifiers that they used, was a compression network
classifier which was based on the second approach.

In the technique that uses a compression net-
work classifier for ear identification, there are two
stages. At the first stage, a network called com-
pression network is trained auto-associatively on
the original ear image, in order to extract its sta-
tistically salient properties of the image data or
macro-features. This vector, which is an interme-
diate codified representation of the original image,
is the compression vector. It constitutes the input
to a single perceptron that performs the identifi-
cation task. In the identification task, each of the
outputs corresponds to one of the individuals to
be identified. Compression networks are trained
as autoassociative memories, they allow the coding
of neural patterns in a small dimensional subspace
by extracting salient features. It has been proved,
that a compression network with A hidden units can
span the space of the h first eigenvectors of the co-
variance matrix corresponding to the input image.
(App. A.2.1 & A.2.2)

Moreno et. al. conducted several experiments
using this method, achieving a recognition rate of
93% on a data set of 168 images (6 images x 28 indi-
viduals), where individuals were invited to change

expressions and face orientation. Also, they ob-
served that in general, the combination of classifiers
does not increase the identification rate, since the
classifiers are not independent.

2.4 Force Field Transformations

In 2002, D.J.Hurley et. al. developed a new
method, called force field transformations. This
method uses an invertible linear transformation
that transforms the entire image into a force field.
To succeed this, it is supposed that each pixel ex-
erts an isotropic force on all the other pixels which
is proportional to the pixel’s intensity. There is a
potential energy surface associated with this force
field, which in the case of an ear can be likened
to a small mountain with a few peaks joined by
ridges. The peaks are called potential energy wells
and the ridges joining them, are called potential en-
ergy channels. The directional property of the force
field is exploited to automatically locate these po-
tential wells and channels, which then form the ba-
sis of the ear’s signature. [11, 12]

2.4.1 Pixel’s Force Exertion

In order to calculate the force exerted by a pixel,
the ear image is transformed. Ear image, is consid-
ered to consist of an array of N Gaussian attractors,
which act as the source of a force field. Every pixel,
is assumed that it generates a spherically symmet-
rical force field (Fig. 3). From that force field, the
force F;(r) exerted by a remote pixel, with position
vector r; and pixel intensity P(r;), on a pixel at the
location with position vector r, can be calculated
by the following equation:

Fi(r) = P()ﬁ
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Figure 3: ”Pixel’s Force Exertion”

The total force acting on a pixel at a given po-
sition is the vector sum of all the forces due to the
other pixels in the image and is given by:

T —T

F(r) = Zm) = ZP(r»m



So, the force field for the entire image can be cal-
culated by just applying the previous equation at
every pixel position in the image. Also, closely as-
sociated with the force field generated by each pixel
there is a spherically symmetrical scalar potential
energy field F;(r) (Fig. 4a). This potential energy
is imparted to, by the energy field of a remote pixel,
with position vector ri and pixel intensity P(r;),
and it is given by the equation:

Eyr) = L)
|ri =7l

Again, in order to find the total potential en-
ergy at a particular pixel location on the image,
the scalar sum is taken over the values of the over-
lapping potential energy functions (Fig. 4b) of all
the image pixels at that precise location. Thus,
the total potential energy can be calculated by the
following equation:

B0 =S i) = 3 o

}

Figure 4: 7(a) Pixel’s Potential Energy Function. (b)
Pixel’s Potential Energy Surface.

Furthermore, a very important relation between
the vector force field and the scalar potential energy
fields is given by the equation:

F(r) = —grad(E(r) = — v E(r)

2.4.2 The Invertible Linear Transformation

In order to show that the force field transforma-
tion is a linear transformation, it is sufficient to
show that the force field transformation has a
corresponding matrix representation, since linear
transformations between finite-dimensional vector
spaces are precisely those transformations that
have matrix representations. So, for example for a
trivial 2x2 pixel image, the matrix equation would

be: Ap = F, where p = P; and d;; = %
T —T
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It is also possible, to construct a matrix represen-
tation corresponting to the potential energy trans-
formation. It has been found, that the force field
matrix is singular if the number of image pixels is
odd, but that it is invertible if the number is even.
The potential energy matrix would be invertible in
either case. That means, that the original image is
in principle recoverable from the potential energy
surface, therefore all the information contained in
the image is preserved in the transformation.

2.4.3 Appliance into ear images

In general, it is not possible to see a force field
directly because it consists of vectors. As a result
of that, it is converted to a scalar field by taking the
magnitude of each vector. Then, a number of test
pixels must be selected and arranged in an ellipse
shaped array, around the ear sector. After that, the
pixels are iterated to generate a set of field lines (Fig
5a & 5b).

Figure 5: ”(a) Ellipse shaped array”. (b) Field Lines.
(c) Ear Signature.

These field lines flow into potential channels and
continue until they terminate in potential wells.
The extraction of those potential wells will give a
number of points that constitute the signature of
the ear in the image (Fig: 5¢).

Hurley et. al. achieved a recognition rate of
99.2% on a data set of 252 images (4 images x 63 in-
dividuals) and they demonstrated that this method
has a very good noise tolerance and a remarkable in-
variance to initialization, scale and rotation.[11, 12]

2.5 Principal Component Analysis

Principal Components Analysis (PCA) has been
one of the most popular techniques to ear and



face recognition and is also known as ”eigen-
faces”. 1In the past, a comparison between face
and ear recognition has been made, using PCA.
[13, 14]. This technique is a way of identifying
patterns in data, and expressing the data in
such a way that the similarities and differences
are highlighted. PCA becomes a powerful tool
for analyzing data, especially over data of high
dimensions, where the graphical representation is
not available, The main advantage of this method
is that you are able to reduce the number of dimen-
sions without loosing important information. This
subsection, describes the basic steps of the method.

Principal Component Analysis basic steps:

e Step 1: The image is cropped and expressed in
a vector.

e Step 2: The mean is subtracted (average across
each dimension) from each of the data dimen-
sions.

e Step 8: The covariance matrix is calculated.
(App. A.1.3)

e Step 4: The eigenvectors and eigenvalues of the
covariance matrix are calculated. (App. A.2.2
& A2.1)

e Step 5: The eigenvector with the highest eigen-
value is the principle component of the data
set. In order to create a final data set that has
fewer dimensions, the components with the less
significance (low eigenvalues) are ignored.

e Step 6: The final data set is created using the
feature vector, which is just the chosen eigen-
vectors from Step 5.

In general, this method is easy to use and easy to
implement. It produces excellent results, if the pro-
vided images are accurately registered and closely
cropped to exclude any extraneous information.
Nevertheless, PCA suffers from very poor invari-
ance.

Victor et. al. wused PCA to both face and
ear recognition and conclude that the face demon-
strated better performance than ear. [13] However,
K. Chang et. al. conducted again an experiment
and demonstrated that no significant difference was
observed between face and ear biometrics, when us-
ing PCA technique. They suggested that the rea-
son for the discrepancy, maybe is a result of the
data set’s low control over earrings, hair, and light-
ing. Furthermore, they conducted experiments us-
ing both face and ear biometric characteristics and
they reported a recognition rate of 90.9% using this
multimodal approach. [14]

2.6 3D Ear Shape Recognition

All the methods described until now, were using
features from the ear’s appearance in 2D inten-
sity images. However, the last years a small num-
ber of researchers introduced different approaches,
in which a 3D ear shape is used.[16][17] Three-
dimensional data seem to offer more flexibility
to problems that appear in two-dimensional data,
such as pose and illumination. The most recent ex-
periments that were conducted using this method,
showed competitive performance for real biometric
applications.

P.Yan and K.Bowyer, created a fully automated
system for ear biometrics using 3D shapes. In
this method, a scanner was used to capture ear’s
depth and color information. Then, a 3D shape
recognition matching, based on Iterative Closest
Point (ICP) (App. A.5), was used and both
2D and 3D data contributed in an automatic
ear extraction. During the extraction, hair and
earrings were separated from the ear’s image and a
curvature estimation was used to detect the ear pit.

The 4 steps to detect ear pit are:

e Step 1: Prepossessing and locating the nose.
(results to a sector that includes the ear)

e Step 2: Using skin detection and isolating the
ear region and the face from hair and clothes.

e Step 8: A surface curvature estimation is per-
formed, in order to detect the pit regions de-
picted in black in the image.

e Step 4: A surface segmentation and classifica-
tion is performed. Using a systematic voting
method, a selection of the most likely pit re-
gion that corresponds to the ear pit is made.

The detected ear pit was then used to initialise
an active contour algorithm to find the ear outlines.
Both 2D color and 3D depth were used for the ac-
tive contour algorithm. Experiments, showed that
using only color or depth information is not pow-
erful enough, since there are cases in which there
is no clear colour or depth change around the ear
contour. So, in order to improve the robustness
of the algorithm a combination of both is needed.
[7, 15, 17]

Yan and Bowyer, achieved a recognition rate of
97.8% on a time-lapsed data set of 1.386 images
over 415 subjects for an identification scenario and
a Equal Error Rate (EER) of 1.2% for a verification
scenario. They also compared an ICP approach on
a point-cloud representation of the 3D data, with



a PCA-based approach on a range image represen-
tation of the 3D data and they found that there is
a better performance using an ICP approach. The
problem with using a range image representation
of the 3D data is that landmark points must be
selected ahead of time, to use for normalizing the
pose and creating the range image. Therefore, er-
rors or noise in this process can lead to recognition
errors in the PCA or other algorithms that use the
range image. [15]

G. Passalis et. al. developed also a novel 3D ear
recognition method and performed an identification
experiment where each of the 506 probe data sets
of the database are compared with each of the 525
gallery data sets. They achieved a recognition rate
of 94.4% and they observed that by decreasing the
computational cost from 30 seconds to 15, they had
a performance penalty approximately 1%, a trade-
off that could be desirable in a real application. [16]

2.7 Acoustic Ear Recognition

A. Akkermans et. al. introduced a new method
that can be used for ear recognition. [18] This
method used the acoustic properties of the pinna
(the outer flap of the ear and the ear canal). They
showed that the acoustic properties can be mea-
sured relatively easy with an inexpensive sensor and
feature vectors can be derived with little effort. In
their experiments, they used three different devices:
(i). Headphone with microphones. (ii) Earphone
pieces with microphones and (iii) A mobile tele-
phone with extra microphone.

Figure 6: ”Determining the Acoustic Transfer Func-
tion”.

In this method, the ear by virtue of its special
shape behaves like a filter so that a sound signal
played into the ear is returned in a modified form
(Fig. 6). An ear signature is generated by probing
the ear with a sound signal which is reflected and
picked up by a small device. Then, the shape of
the pinna and the ear canal determine the acoustic
transfer function. This acoustic transfer function

forms the basis of the acoustic ear signature. An
obvious commercial use is that a small microphone
might be incorporated into the earpiece of a mobile
phone to receive the reflected sound signal and the
existing loudspeaker could be used to generate the
test signal.

Akkermans et. al. achieved Fqual Error Rates
(EER) in the order of 1.5% - 7%, depending on the
application device that was used to do the measure-
ment. They observed also, that headphones and
earphones gave roughly the same performance re-
sulting in an ERR of respectively 7% and 6%. Fur-
thermore, they demonstrated that the worst-case
EERs over all possible splits, were 8% for the head-
phones, 8.4% for the earphones and 15% for the
mobile phone.

As a second experiment, they applied Fisher Lin-
ear Discriminant Analysis (LDA) (App. A.6 ) to
the three ear databases, in order to select the most
discriminating components amongst the subjects.
They reported, that the results were significant bet-
ter, as the new worst-case EERs they achieved,
were 1.4% for the headphones, 1.9% for the ear-
phones and 7.2% for the mobile phone. Finally,
Akkermans et. al. investigated how the applied
frequency range used in the excitation signal would
influence the classification performance. After they
conducted some experiments in different frequency
ranges, that used also the LDA-technique, they con-
cluded that a wider frequency range would give bet-
ter classification results. [18§]

3 Comparing Biometrics

In general, if we try to answer the question, ” Which
is the best biometric?”, we are going to realize that
there is no trivial answer. There is not one bio-
metric modality that is proper for all biometric im-
plementations. Many factors are involved and each
must be considered separately, depending on the
usage and the environment. Key factors for select-
ing a biometric technology include evaluating the
environment, population size and demographics,
security risks, task (identification or verification),
ergonomics, interoperability with existing systems
and user considerations. The careful evaluation of
the key factors, plays a crucial role in the success
of the selected technology.

Moreover, it is very important to note that bio-
metric modalities are in varying stages of maturity.
For example, fingerprint recognition has been used
for over a century, while ear recognition is some
decades old. It should be clear to the reader, that
maturity may not be related to the best technology,
but can always be an indicator of which technolo-



gies have more implementation experience. The ef-
fectiveness of a biometric characteristic is depen-
dent on how and where it is used.

3.1 Ear & Other Biometrics

Having a closer look to each biometric modality,
we are going to observe that every biometric has its
own strengths and weaknesses, that should be taken
into account before proceeding to an application.

Fingerprint, is easy to use with some training
and the size of the capture system can be really
small. On the other hand, ear may need more
training, but the capture system can be a sim-
ple camera, that efficiently minimizes the cost. In
comparison to ear, fingerprint is more effective in
the large-scale systems and provides a better han-
dling for the amounts of existing data. However,
the latest methods on the ear recognition are re-
ally promising, as they have reported much better
results on handling large datasets. Fingerprint is
unique to each finger of each individual, and the
ridge arrangement remains permanent during one’s
lifetime. Similarly, the ear has also a unique and
permanent structure for an adult. An individual’s
age and occupation may cause some sensors dif-
ficulty in capturing a complete and accurate fin-
gerprint image, a problem that is not occurring in
ear images. It is important to mention, that ear
is more difficult to be replicated than fingerprint
(e.g. gummy fingerprints) and that sometimes fin-
gerprint has negative public perceptions (e.g. it is
related to criminal implications).

Face and ear are closely related, since they are
both located in the human head and some of the
methods used for their recognition are exactly the
same. An extensive research has been performed
comparing the performance of these two biometrics
and the results reported no significant difference
(section 2.5). Comparing ear with face, we observe
a lot of similarities, but also some important differ-
ences. Both characteristics do not require any con-
tact in order to be captured and the sensors that
can be used, are commonly available (e.g. cam-
eras). Moreover, almost the same drawbacks do
exist concerning obstruction, as face view can be
obstructed by hair, glasses, hats, make-up, scarves,
etc. and ear view can be obstructed by hair and
earrings. Nevertheless, ear is unaffected by facial
expressions and it is not as sensitive as face, to
changes such as lighting, expression and pose. Ear
is located on the side of the head and the predic-
tion of the background is easier than that of the
face. The changes occurring in the face over time
and the poor-quality of video images can lead to
inaccurate results. However, face seems to handle

better the large datasets in comparison to ear and
it is a characteristic that can be easily verified by a
human.

Iris, is another biometric characteristic that does
not require any contact to be captured. It is a pro-
tected internal organ and thus compared to ear is
less prone to injuries. Furthermore, iris is highly
stable over lifetime and the uniqueness of eyes, even
between the left and right eye of the same person,
makes iris scanning more powerful for identifica-
tion purposes than ear. Nevertheless, the problem
of obstruction appears also to iris, as there is a diffi-
culty on the capturing procedure for some individ-
uals and this procedure can be easily obscured by
eyelashes, eyelids, lenses, and reflections from the
cornea. Compared to ear, acquisition of an iris im-
age requires more training and attentiveness and a
smaller capture distance is needed. Moreover, iris
is impossible to be verified by a human and some-
times the capturing procedure causes anxiety to the
public.

DNA is unique and permanent to each individ-
ual. However, some of the DNA properties, that do
not appear to any other biometric, including ear,
make it unpopular. The privacy concerns about the
additional information of the individual that could
be obtained (e.g. diseases), are becoming a serious
obstacle to the DNA usage. In comparison to any
other recognition system, the DNA recognition sys-
tem involves real-time authentication capabilities
and techniques with high computational resources,
which are difficult to be automatized since they re-
quire some chemical processes. In comparison to
ear, DNA seems more vulnerable to frauds, because
it may be impossible to create a DNA copy, but it
is always possible to steal a piece of DNA from an
individual and use this information for fraudulent
purposes.

Hand geometry, is a characteristic that is very
easy for users and requires only to place your hand
on the device. The amount of data required to
uniquely identify a user in a system is very small
and comparable to ear’s. Hand geometry, is be-
lieved to be a highly stable pattern over the adult
lifespan and its use requires training. However, it is
intended only for verification purposes. In compar-
ison to ear, the hand geometry recognition system
needs a larger and more expensive hardware. An-
other obstacle is that hands are more vulnerable
to injuries than ear and that can lead to lack of
accuracy in the recognition system.

Vein patterns are unique to each individual and
invariant to time, even in the case of identical twins.
In comparison to ear, vein patterns can be used to
high-security applications and they are more diffi-
cult to be copied, because they lie under the skin



surface. Nevertheless, the main disadvantage of
this technology, is that the infrared sensors are re-
ally expensive and large, especially compared to a
common camera and therefore are not proper for
mass deployment.

Retina, is unique to each individual and it is very
difficult to be duplicated. It is a highly accurate
biometric for identification and authentication and
compared to the ear, it can be used wherever high
security is the major concern. However, the retina
recognition system is not as user friendly as the ear
recognition system. A low-intensity light source
through an optical coupler scans the unique pat-
terns of the layer of blood vessels, while the user
looks into a receptacle and focuses on a given point.
Unfortunately, that makes retina technology very
intrusive to the user.

Voice/Speaker enjoys the public acceptance and
no contact is required in order to be captured.
Voice recognition uses the acoustic features of
speech, that have been found to differ between
individuals. These acoustic patterns reflect both
anatomy (e.g., size and shape of the throat and
mouth) and learned behavioral patterns (e.g., voice
pitch, speaking style). The sensors used for captur-
ing, are commonly available sensors such as tele-
phones and microphones. In general, voice com-
pared to ear, is not sufficiently distinctive for identi-
fication over large databases and it changes through
aging. Furthermore, it is difficult to control sensor
and channel variances, something that has a signif-
icant impact to the capabilities of the voice recog-
nition system.

3.2 Overview of the experiments

The results from the presented experiments in the
field of ear recognition, are really promising. Most
of the applied methods discussed, reported a Recog-
nition Rate (RR) over 90%. (Fig. 7)
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Figure 7: ”Recognition rates reported”

More precisely, compression networks succeed a

RR of 93% on a data set of 168 images and force
field transformation achieved an excellent RR of
99,2% when was used on a data set of 252 images.
Experiments that used principal component analy-
sis reported a RR of 71.4%, they showed that the
result is comparable with the 70.6% of face recogni-
tion and that a RR of 90.6% is possible, when both
biometrics are used. Furthermore, both of the ex-
periments that presented and used 3D-Shape recog-
nition method, achieved first-class rates. Yan’s ex-
periment gave a RR of 97.8% using a data set of
1.386 images over 415 subjects and Passalis’s ex-
periment denoted a RR of 94.4% on a data set of
1031 images over 525 subjects.
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Figure 8: ”Acoustic Recognition - Worst reported
EERs for the devices”

A different approach, that used the ear acous-
tic was presented by Akkermans. The conducted
experiment, stated a significantly lower Fqual Er-
ror Rate (EER) when Linear Discriminant Analy-
sis (LDA) was applied and also showed that head-
phones and earphones have almost the same perfor-
mance, however mobile phones give a higher EER.
In figure 8, the worst-case of EER is demonstrated
for each of the used devices, with and without ap-
plying LDA.

3.3 Evaluation of ear methods

Ear methods at this point seem to be mature
enough. Tannareli’s manual system, showed the way
and as it was expected modern and more efficient
automatic recognition methods, followed.

Voronoi diagrams succeeded to avoid the prob-
lem of localizing anatomical points and the weak-
ness of basing all feature measurements on a sin-
gle point. However, this method did not solve the
problem of occlusion by hair and earrings. The use
of thermograms was proposed, but no further in-
vestigation was made and the technique remained
unused. [§]



Neural mnetworks and Principal Components
Analysis, were already known to the research com-
munity for their use in other biometrics, such as
face. However, these methods had never been ap-
plied for ear recognition, in the past. Compression
network classifier (neural networks) demonstrated
promising identification results, however when it
was combined with facial features classifiers, it did
not increase the identification rate, as the classifiers
were completely independent. Principal Compo-
nent Analysis was already a popular approach, used
in face recognition. It produces very good results,
but unfortunately the problem of poor invariance
remains a major issue for this method. Two differ-
ent studies were made, using PCA. The second one,
showed that the performance for ear is comparable
to facial biometrics and that the different results,
that were obtained from the first one, were caused
by differences in the quality of the images.

The force field transformations and the 3D-
shape, introduced completely different ways that
can be used for automatic ear recognition. Force
field transformation achieved remarkable results
and reported features like robustness, reliability, in-
variance and excellent noise tolerance. Neverthe-
less, there are still obstacles concerning the com-
putation load and the probable extension of the
method to higher-dimensions. 3D shape recogni-
tion showed that the three-dimensions can handle
better the problems of obstruction (hair,earrings)
and they can give excellent results. The total per-
formance of the technique, seemed ideal even for
real life applications, however, the conducted ex-
periments were made in a small range of data and
thus more investigation is needed.

Acoustic recognition, demonstrated a totally dif-
ferent technique that is based on acoustic patterns
and it takes advantage of the ear’s acoustic fea-
tures. The sensors used (low cost, public accep-
tance) and the promising results, may be an ad-
vantage for the adoption of this method. However,
more tests and experiments are needed, in order to
conclude about the efficiency of this technique in
systems with larger datasets. Finally, it is proba-
ble, in the future, that acoustic recognition could be
used also as a multimodal biometric and be related
to voice/speaker biometric.

4 Conclusions

Although ear biometrics is a relatively new topic,
researchers have already come up with various ap-
proaches for its use as an automated recognition
system. Some of the techniques have already been
used in the field of human recognition, while some

other presented a whole new perspective. The eval-
uation of the upcoming methods, such as force field
transformation, 3D-shape recognition and acoustic
recognition, offered a competitive performance and
a promising efficiency. However, it is true that ear
at the moment, does not have any commercial use.
Ear has weaknesses, but the performed research
is expected to improve the existing methods and
discover new ones. All recent conducted experi-
ments showed that ear biometric is already capable
to be used in real life applications, nevertheless,
the adoption of a new biometric is something that
takes a lot of time. Thus, it is more probable, that
ear will be introduced first as a supplementary bio-
metric technique (e.g. face + ear) and then evolve
through practice.
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Appendices

A Mathematical Background

A.1 Statistics

Statistics are based around the idea that you have a big set of data, and you want to analyze, that set
in terms of the relationships between the individual points in that data set. In the following subsections,
some of the needed measures for this paper, are presented.

A.1.1 Mean of Sample & Standard Deviation

The Standard Deviation is the average distance from the mean of the data set to a point.
Let X, be the following data set,
X =[12461215 254568 67 65 98],

Suppose also that X; refers to the number in the i position and n to the number of elements in
the data set X, then

_ ¢
The mean of sample is given by : X = D;l
n

The mean doesnt tell us a lot about the data except for a sort of middle point. For example, the data
sets [0 8 12 20] and [ 8 9 11 12], have exactly the same mean (10), but are obviously quite different. It
is the spread or else the Standard Deviation of the data that is different.

Z?:1(Xi _ X)2
(n—1)

The standard deviation for a set with the same data, like [10, 10 , 10, 10], is 0, but the mean is equal
to 10.

The standard deviation is given by : s =

A.1.2 Variance

Variance is another measure of the spread of data in a data set. In fact, it is almost identical to the
standard deviation.

Z?:l (Xi - X)2
(n—=1)

The variance is given by: s =

It is simply the standard deviation squared. Standard deviation is the most common measure, but
variance is also used.

A.1.3 Covariance

Standard deviation and variance only operate on 1 dimension, so that you could only calculate the
standard deviation for each dimension of the data set independently of the other dimensions. However,
it is useful to have a similar measure to find out how much the dimensions vary from the mean
with respect to each other. Covariance is such a measure. Covariance is always measured between 2
dimensions. If you calculate the covariance between one dimension and itself, you get the variance. So,
if you had a 3-dimensional data set (z,y,z), then you could measure the covariance between the z and y
dimensions, the z and z dimensions, and the y and z dimensions. Measuring the covariance between z
and z, or y and y and z and z would give you the variance of the x,5 and z dimensions respectively.

Z?:l(Xi — X)(Yi - Y)
(n—1)

The covariance is given by: cov(X,Y) =
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The exact value of covariance is not as important as its sign. If the value is positive, then that indicates
that both dimensions increase together. If the value is negative, then as one dimension increases, the
other decreases. And in the last case, if the covariance is zero, it indicates that the two dimensions are
independent of each other. Also, cov(X,Y) equal to cov(Y,X).

A.2 Matrix Algebra

This section serves to provide a background for the matrix algebra required for the some of the methods
described in section 2 of this paper. Nevertheless, a basic knowledge of matrices is assumed.

A.2.1 Eigenvectors & Eigenvalues

An eigenvector is a vector that is scaled by a linear transformation, but not moved. Think of
an eigenvector as an arrow whose direction is not changed. It may stretch, or shrink, as space is
transformed, but it continues to point in the same direction. The scaling factor of an eigenvector is
called its eigenvalue. An eigenvalue only makes sense in the context of an eigenvector.

Let A be an n x n matrix. The number A is an eigenvalue of A, if there exists a non-zero vec-
tor v such that, Av = Av. In this case vector v is called eigenvector of A corresponding to A. In order
to compute the eigenvector and eigenvalues, we can rewrite the condition Av = Av as (A — AX)v =0,
where I is the n x n identity matrix. In order for a non-zero vector v to satisfy this equation, (A — \I)
must not be invertible. That is the determinant of (A — AI) must equal 0. We call p(\) = det(A — AI)
the characteristic polynomial of A. The eigenvalues of A are simply the roots of the characteristic
polynomial of A.

A.2.2 Covariance Matrix

When we have a n-dimensial data set you can calculate . different covariances values.

n!
(n—2)%2
A useful way to get all the possible covariance values, between all the different dimensions, is to

calculate them all and put them in a matrix. Then, the matrix is called covariance matriz.
The definition for the covariance matrix for a set of data with n dimensions is :

nrn - -
C™" = (¢ 4, ¢4, = cov(Dim;, Dim;))
where C™®" is a matrix with n rows and n columns, and Dim, is xth dimension.

For example, a 3-dimensional covariance matrix would be :

cov(z,x) cov(x,y) cov(z,z2)
C = | cov(y,x) cov(y,y) cov(y,z)
cov(z,x) cov(z,y) cov(z,z2)

Notice, that down the main diagonal the covariance value is between one of the dimensions and itself
and that the matrix is symmetrical about the main diagonal.

A.3 Voronoi Diagrams

In short, a voronoi diagram records information about the distances between sets of points in any
dimensional space. For path planning, voronoi tends to be used in two dimensional space, where sets
of points all lie within a plane. There are many approaches to constructing Voronoi diagram, but some
methods are more efficient in terms of time than others.
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Figure 9: ”Voronoi Diagrams

As seen from the Fig. 9 above, a plane is divided into cells so that each cell contains exactly one
site. For every point in the cell, the Euclidean distance of the point to the site within the cell, must be
smaller than the distance of that point to any other site in the plane. If this rule is followed across the
entire plane, then the boundaries of the cells, known as Voronoi edges, will represent points equidistance
from the nearest 2 sites. The point where multiple boundaries meet, is called a voronoi verter and is
equidistance from its 3 nearest sites.

For a further study the interested reader can refer to: Franz Aurenhammer, Voronoi Diagrams - A
Survey of a Fundamental Geometric Data Structure. ACM Computing Surveys, 23(3), 345-405, (1991).

A.4 Canny Operator

The Canny operator was designed to be an optimal edge detector (according to particular criteria). It
takes as input a gray scale image, and produces as output an image showing the positions of tracked
intensity discontinuities. It works in a multi-stage process. First of all the image is smoothed by Gaussian
convolution (is used to ‘blur’ images and remove detail and noise). Then a simple 2-D first derivative
operator is applied to the smoothed image to highlight regions of the image with high first spatial
derivatives. Edges give rise to ridges in the gradient magnitude image. The algorithm then tracks along
the top of these ridges and sets to zero all pixels that are not actually on the ridge top so as to give
a thin line in the output, a process known as non-maximal suppression. The tracking process exhibits
hysteresis controlled by two thresholds: T1 and T2, with T1 > T2. Tracking can only begin at a point
on a ridge higher than T1. Tracking then continues in both directions out from that point until the
height of the ridge falls below T2. This hysteresis helps to ensure that noisy edges are not broken up
into multiple edge fragments.

A.5 TIterative Closest Point

Tterative Closest Point (ICP) is an algorithm employed to match point-sets. This matching is used to
reconstruct 3D surfaces from different scans and achieve optimal path planning. The algorithm is very
simple and accurate and is widely used for 3D shape matching, however it is computationally expensive.
It iteratively estimates the transformation (translation, rotation) between two raw scans. It takes as an
input the two raw scans, an initial estimation of the transformation and the criteria for stopping the
iteration and it outputs a refined transformation.

Briefly, the ICP’s algorithm steps are :

e Step 1: Associate points by the nearest neighbor criteria.

e Step 2: Estimate the parameters using a mean square cost function.
e Step 3: Transform the points using the estimated parameters.

e Step 4: Re-associate the points and so on (iterate).

For a further study the interested reader can refer to: P. J. Besl, N. D. McKay, IEEE Transactions
on Pattern Analysis and Machine Intelligence, pp. 239-256, (1992).
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A.6 Fisher Linear Discriminant Analysis (LDA)

Fisher Linear Discriminant Analysis (LDA) is a method used in statistics and machine learning to
find the linear combination of features which best separate two or more classes of objects or events.
The resulting combination may be used as a linear classifier, or, more commonly, for dimensionality
reduction before later classification. LDA is closely related to Principal Component Analysis (PCA)
and Factor Analysis in that both look for linear combinations of variables which best explain the data.
LDA explicitly attempts to model the difference between the classes of data. PCA on the other hand
does not take into account any difference in class, and factor analysis builds the feature combinations
based on differences rather than similarities.

For a further study the interested reader can refer to: Mika, S. et al. Fisher Discriminant Analysis
with Kernels. IEEE Conference on Neural Networks for Signal Processing IX, (1999).

14



