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Abstract

Elliptic Curve Cryptography (ECC) can be easily implemented inside a smart card, demonstrating
great level of security and computation efficiency. However, there are still possible threats for such
tamper-resistant devices, as an attacker can take advantage of the existence of non-evaluated hardware
weaknesses. Differential Fault Analysis (DFA), is one of the side channel techniques which can be
used for attacking this kind of hardware and successfully reveal useful secret information, such as the
private key. This paper, presents an outline of the elliptic curve cryptosystem usage on smart cards
and focuses on how DFA attacks can be applied on smart cards using ECC.
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1 Introduction

Nowadays, many commercial applications aim to
provide a high-level security, by using tamper-proof
devices such as smart cards. Inside a smart card,
a designer is able to choose between different kinds
of cryptographic systems, in order to provide se-
curity features. Nevertheless, a typical smart card
has several characteristics, such as low computa-
tional processor power and small memory size (e.g.
32 KB), that constitute an important drawback for
applying strong cryptographic algorithms.

Elliptic Curve Cryptography (ECC) seems ideal
to handle these obstacles, as in comparison to other
public-key cryptography schemes (e.g. RSA, DSA)
is able to deliver a significantly smaller key size by
providing equivalent level of security (A.1 [1] [2]).
This results in faster computations, lower power
consumption, as well as memory and bandwidth
savings. Therefore, the time needed for an elliptic
curve cryptosystem to generate a key pair is less,
that even a smart card with limited resources can
function efficiently. However, no theoretic proof is
known for the difficulty of the Elliptic Curve Dis-
crete Logarithm Problem (ECDLP) on which EC’s
security is based (see 2.1), therefore the adoption of

such cryptosystems in the industry is not so wide.

Public-key cryptography schemes require each
party to have a key pair. A private key, which
must not be disclosed to another user and a public
key, which may be made available in a public direc-
tory. The two keys are related by a hard one-way
function, so it is computationally infeasible to de-
termine the private key from the public key. The
secure storage of the private key is critical and vital
to the security of the cryptosystem. Private keys
are often stored in software with password protec-
tion, however a storage in a hardware token such as
a smart card, would be ideal for preventing direct
access or tampering.

In 1997 [3], a new kind of attack called Differen-
tial Fault Analysis (DFA) was discovered and suc-
cessfully applied to tamper-proof devices that were
implementing popular cryptosystems (e.g RSA,
DES). This paper, performs a deep survey on DFA
attacks that can be applied on smart cards which
are using Elliptic Curve Cryptography (ECC). In
section 2, a brief discussion about the functionality
of ECC inside a smart card is made. In section 3,
an introduction to DFA is given and several possi-
ble methods for creating faults are described. After
that, a detailed summary of known DFA attacks
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on elliptic curve cryptosystems follows and poten-
tial countermeasures are reported. Finally, the pa-
per concludes and evaluates the importance of DFA
threats and whether they constitute a drawback for
the commercial adoption of elliptic curve cryptosys-
tems on smart cards.

2 The EC cryptosystem

An elliptic curve cryptosystem, is a system that uses
a public key encryption technique based on ellip-
tic curve theory and creates faster, smaller, and
more efficient cryptographic keys. This cryptosys-
tem, is able to generate keys from the properties
of the elliptic curve equation (A.2 [4]) and perform
a cryptographic operation, comparable to all the
other traditional public key encryption methods.
In the following subsections, the steps that an ellip-
tic curve cryptosytem performs are presented and a
certification system design based on elliptic curves
is described.

2.1 Cryptographic steps

According to [1], a cryptographic operation that
uses elliptic curve theory, includes 5 basic steps:

• Step 1: A curve C that is produced using the
simple1 equation form, is chosen over a finite
field Fq.

• Step 2: A point P that belongs to C is found,
such as order2(P ) = t, where t constitutes a
large prime number.

• Step 3: The curve C and the point P are con-
sidered known to the public and they can be
shared by multiple users.

• Step 4: The private key is an integer d, such
that 1 < d < t.

• Step 5: The public key Pk is a point in the
curve C, where Pk = dP .

The security of such a system relies on the Ellip-
tic Curve Discrete Logarithm Problem (ECDLP),
which states the following:

”Let E be an elliptic curve over a finite field
Fq. Suppose P is some point of E(Fq) and let Q

be a point in group {O, P, 2P, 3P, . . .}. Find
an integer t such that Q = tP. ”

1Simplified form: y2 = x3 + ax + b.

2order(P) is the smallest t integer that satisfies the equa-
tion tP = O, where O the point at infinity.

It is widely believed that the elliptic curve dis-
crete logarithm problem is computationally hard to
solve, when the point P has large prime order. Up
to now, most of the known methods for solving the
ECDLP, are showing exponential or sub-exponential
complexity. Thus, based on this problem various
kind of cryptographic operations can be executed,
such as encryption/decryption, key-exchange and
use of certificates. In the next subsection, a cer-
tificate system design that uses such cryptographic
operations is discussed.

2.2 A certification system design

Though this document mainly deals with fault at-
tacks, this section briefly presents to the reader a
certification system on smart cards, implementing
ECC. Through this mention the reader will be able
to understand in a better way the sections to follow
and also will be given a clear picture of the usage
of elliptic curves in real life applications.

In [1], a possible certification system design based
on an elliptic curve cryptosystem is described. The
system design supposes that there is Certification
Authority (CA) and a smart card user. The cer-
tification procedure is divided into 2 main parts:
i) Request for a certificate and ii) Verification of a
user. Both, are shortly described below.

2.2.1 Request for a certificate

• Step 1: Bob who wants to apply for a cer-
tificate refers to the CA in person. Then a
verification of his identity is performed by the
CA.

• Step 2: Bob has to type his personal informa-
tion and password into the computer directly.

• Step 3: The CA stores the data into the com-
puter temporary.

• Step 4: Smart card randomly generates the
key pair, which is constituted from a private
key s and a public key S = sG. This way, the
private key is secured inside the smart card, as
it is never left the device.

• Step 5: The smart card sends the public key
(a EC point) to the CA server.

• Step 6: Combining the user’s information and
the public key, the CA creates the certificate
and signs it, using its own private key.

• Step 7: Thereafter, CA copies the created cer-
tificate inside the smart card.
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2.2.2 Verification of a user

• Step 1: Bob presents his smart card that con-
tains the certificate to the terminal.

• Step 2: The terminal verifies the certificate us-
ing CA’s public key.

• Step 3: The terminal randomly generates an
integer x and requests from the smart card to
sing it, using Bob’s own private key.

• Step 4: Bob’s smart card signs x and sends it
back to the terminal.

• Step 5: The terminal verifies it, by using Bob’s
public key extracted from the certificate.

• Step 6: The terminal will only accept Bob if
he passes the verification.

The advantage of storing the private key inside
the smart card without having the ability to leave
the device, is that Bob can now prove that he knows
his private key without revealing it. This approach
is known as zero-knowledge-proof and it can pre-
vent the unauthorized access. Suppose, that Eve
creates a fake smart card in order to pretend Bob.
This attack will fail because Eve cannot pass the
zero-knowledge-proof, as she does not possess Bob’s
private key. However, as it will be demonstrated
in the following sections, there are techniques that
Eve could use to disclose the private key. Thus,
the security countermeasures of systems based on
secure information storage on hardware should be
re-evaluated, in order to defend against such tech-
niques.

3 Differential Fault Analysis

Researchers showed that the occurrence of faults is
a serious threat to cryptographical devices. In 1997,
they introduced a new active side channel attack,
called Differential Fault Analysis (DFA). The prin-
ciple of DFA attack is based on creating faults and
unexpected environmental conditions into crypto-
graphic designs, in order to disclose their internal
states without focusing on the algorithms weak-
nesses. [3] [7]

As a fault attack, we define a complete approach
that if applied to a tamper-resistant device, it is
able to return secret data. An attacker may run
the device several times while inducing faults into
memory cells or other structural elements of the de-
vice. In this way, he causes the attacked device to
malfunction and to output a faulty result, which is
used to derive secret information. More precisely,
if an attacker enforces some sort of physical stress

on the smart card, he can induce faults into the
circuitry or memory. These faults become manifest
in the computation as if an error occurs, a faulty
result is computed. Thus, if the computation de-
pends on some secret key, a comparison between
correct data and faulty data may allow to conclude
facts about the secret key.

Usually, in order to induce faults a direct access
and contact with the chip is needed. Depending on
the precision that the injections can achieve and the
equipment that is used for injecting the faults, the
methods can be separated into invasive and non-
invasive. [9]

Non-invasive fault injection methods do not
modify the package of the device. Faults are pro-
voked by manipulating the conditions the device
runs. This can be done by injecting peaks in to
the clock or the power supply, which is called glitch
or spike attack, respectively. Another possibility is
to change the temperature over the specified con-
ditions. These methods are inexpensive and easy
to perform, however only a limited precision can be
achieved, as those attacks impact on the whole chip
at once.

Invasive methods establish direct electrical con-
tract to the surface of the chip. Thus, the device
itself can be modified. These attacks need very ex-
pensive equipment like a probe station and a laser
cutter.

In fact, we could say that every fault attack
method can be described by a measure of inva-
siveness indicating the amount of tampering neces-
sary. Moreover, some attacks allow complete con-
trol where the fault injection happens, whereas oth-
ers do not. Therefore, an attacker may need a direct
access to the tamper-resistant device and special
equipment, in order to apply a fault attack.

3.1 Methods for injecting faults

Errors almost never occur naturally, as software is
usually rigorously tested and hardware is expected
to be faultless. As a result of that, there is no
protection against errors and any malfunction is
left uncontrolled. Smart cards function in a hostile
environment, thus an attacker is possible to apply
techniques in order to generate faults. In practice,
there are various methods for inducing faults on
tamper-resistant devices like smart cards and the
most commonly used are presented below. [10] [11]

3.1.1 Temperature

Typically, electronic equipment only works reliably
in a certain range of temperature. If the outside
temperature is too low or too high, faults occur.
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The circuit manufacturers define upper and lower
temperature thresholds within which their circuits
will function correctly. The goal here is to vary
temperature until the chip exceeds the thresholds
boundaries. When conducting temperature attacks
on smart cards two effects can be obtained: the
random modification of RAM cells due to heating/-
cooling and the exploitation of the fact that read
and write temperature thresholds do not coincide
in most non-volatile memories ( NVMs). Thus, by
tuning the chips temperature to a value where write
operations work but reads do not or the other way
around, a number of attacks can be mounted.

3.1.2 Power Spikes

A smartcard is a portable device without its own
power supply. Hence, it always requires a smart
card reader providing it with power in order to
work. This reader can be easily replaced by an
adversary with laboratory equipment, capable of
tampering with the power supply. It has been spec-
ified by standards, that a smart card must tolerate
a certain variation on the power supply of 10% of
the standard 5V voltage. However, if the variation
is significantly higher than 10%, the card does not
work properly anymore. In fact, short massive vari-
ations of the power supply, which are called spikes,
can be used to induce errors into the computation of
the smart card. Spikes allow to induce both mem-
ory faults as well as faults in the execution of a
program. Equipment requirements are totally de-
pend on the type of the spike to be generated, but
are not necessarily expensive.

3.1.3 Clock Glitches

In a similar way to the power spikes, it is some-
times possible to have the clock speed disturbed.
Smart cards do not create their own clock signal
and they are usually provided with a 3.5 MHz sig-
nal. Although modern high-end smartcards use a
randomized clock, they only randomize the clock
signal provided by the external card reader. Smart
cards are required to tolerate a voltage variation in
the clock signal and must also work properly with
deviations of clock rise and clock fall times of 9%
from the standard period clock cycle. Since the
adversary may replace the card reader by labora-
tory equipment, he may provide the card with a
clock signal, which incorporates short massive de-
viations from the standard signal, which are be-
yond the cards’ tolerance boundaries . Such signals
are called ”glitches”. Clock-signal glitches can be
used to both induce memory faults as well to cause
a faulty execution behavior and they are simple,

cheap and noninvasive.

3.1.4 Optical Attacks

Using focused light with specific wavelengths, we
can change the flip-flops in a memory cell. By do-
ing this, it is thus possible to change or modify
the memory through the photoelectric effect. These
attacks require light to be able to reach the chip,
and therefore any protective coating needs to be re-
moved. If a smart card is unpacked, in a way that
the silicon layer is visible, it is easy to use a laser
cutter or focused UV light in order to destroy indi-
vidual structures of the chip. This allows to induce
a great variety of destructive faults. Modern green
or red lasers can be focused on relatively small re-
gions of a chip, such that faults can be targeted
fairly well. However, such light attacks are usu-
ally not usable for a systematic attack, since they
cannot be targeted in a high precision in order to
change selected bits.

In 2002, a new attack called optical attack was
introduced. This attack allows to set or unset indi-
vidual chosen bits of an SRAM memory cell, if the
chip is unpacked in order to allow visual contact
with the memory cells. In general, optical attacks
can be done relatively cheaply with simple equip-
ment, and also they can be very precise, effecting
only a single bit.

3.1.5 Electromagnetic Attacks

By creating a strong electromagnetic source near
memory the ions representing the states in the
memory are moved around, and thereby the mem-
ory is disturbed. It is claimed that this gives a fine
control of exactly what bit needs to be controlled.
Moreover, this attack can be performed relatively
cheap and it is a non-invasive attack. It only re-
quires to be near the processor and there is no need
for visual contact with the chip as it can be applied
from outside.

4 Fault attacks on elliptic

curve cryptosystems

In 2000, I. Biehl et. al. extended the ideas for dif-
ferential attacks used on the RSA cryptosystems.
A proposal for a similar way of attacking elliptic
curve cryptosystesms was made and an investiga-
tion using DFA techniques for revealing the secret
key of an ECC smart card implementation was per-
formed. [7] [12]

In all the attacks, the authors assumed that the
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cryptographically strong3 elliptic curve is public and
known to the attacker as part of the public key.
Moreover, they considered that the secret key d is
stored inside a tamper-proof device, unreadable for
outside users and that on an input of some point P
which belongs to the chosen elliptic curve, the de-
vice computes and outputs the point d · P . Finally,
they supposed that an attacker can have access to
the smart card and is able to compute d · P for any
arbitrary input point P ′.

The main idea of the attacks, is focused on the
fact that possible faults at the begging of the multi-
plication could leak secret information. In practice,
if an attacker inserts a point P ′ that lies on a dif-
ferent curve from the one being used by the smart
card, then he is able to decrease the elliptic curve
discrete logarithm problem into smaller problems.

In this section, two attacks are discussed in de-
tail. An in depth analysis of each attack is given
and the steps that must be followed in order to re-
veal the secret private key are presented.

4.1 No correctness check

This attack does not depend on the creation of a
fault, but on the assumption that there are no in-
put/output checks. If the smart card does not ex-
plicitly check whether an input point P or the result
of the computation is really a point on the crypto-
graphical strong elliptic curve E , then an attack is
feasible. Usually, a well-designed system has defen-
sive mechanisms for invalid points. Nevertheless,
such a bad implementation is possible to occur in
practice.

The expected functionality of an elliptic curve
cryptosystem, is to take as an input a point P ∈ E
and output the product d · P ∈ E (fig. 1). In this
way, an attacker is infeasible to disclose the secret
key d as the computations inside the smart card
are based on a strong elliptic curve.

Figure 1: Expected functionality

Supposing now, that the designers of a smart
card forgot to implement input/output point val-
idation mechanisms, it would be possible for an at-
tacker to insert as input a point P ′ that does not

3An elliptic curve is called cryptographically strong if the
underlying ECDLP is considered to be computationally in-
tractable for the application in use.

belong to the strong elliptic curve E and take as
an output the product d · P ′, which also does not
belong to E (fig. 2). Taking advantage of this lack
of input/output check, someone can determine the
secret key d by using another non-strong elliptic
curve E ′.

Let E = {a1, a2, a3, a4, a5} the cryptographical
strong elliptic curve, that the smart card imple-
ments. We choose to give as an input a point P ′

that belongs to a different elliptic curve E ′.

Figure 2: No point validation

The input pair P ′(x, y) is carefully chosen such
that a′

5
= y2 +a1xy +a3y−x3−a2x

2 −a4x. Then,
the new tuple (a1, a2, a3, a4, a

′
5) defines the elliptic

curve E ′ which is selected in such a way, that its
order has a small divisor r = ord(P ′). Based on
Theorem A (B.1), it holds that the output of the
smart card with input P ′ would be d · P ′ ∈ E ′ (fig.
3). [12]

Figure 3: First attack

Therefore, we end up with a discrete logarithm
problem in the subgroup of order r generated by
P ′ ∈ E ′, namely given points P ′ and d ∈ P ′ that
belong to E ′, find d mod(ord(P ′)). Repeating the
procedure with a different choice of P ′ we can create
a system of equations, like the following one:

d ≡ d1 mod(r1)

d ≡ d2 mod(r2)

d ≡ d3 mod(r3)

The above system, can be easily solved using the
Chinese Remainder Theorem (see B.2) and thus the
value of the secret key d is computable. This tech-
nique, is even more efficient if we do not choose in
advance the point P ′, but the curve E ′ and then
compute the point P ′. [12] There are several meth-
ods for constructing such a non-strong elliptic curve
E ′, but such a description is out of the scope of this
paper and therefore the reader should refer to [13]
for more details.
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4.2 Fault at the beginning

If the smart card is designed in such a way that
checks whether the given input point is a point
within the group of points of the cryptographically
strong elliptic curve E , then the attack that was
described in subsection 4.1, is no more applicable
(fig. 4).

However, if the smart card does not check the
output point, we are still able to enforce a fault
inside the smart card at some precise moment at the
beginning of the multiplication procedure. In order
for someone to apply a fault on the smart card,
one of the several methods that were presented in
section 3 can be used, depending on the needed
result.

Figure 4: Performing input check.

In this attack, the main objective is to generate
a single bit fault exactly after the input check and
before the start of the multiplication process (fig.
5). Such a fault, is possible to be generated by
applying an optical fault attack, which as already
mentioned in section 3.1.4, it can be very precise
and capable of effecting only a single bit.

Figure 5: Second attack

Lets suppose that a single bit fault is produced
exactly after the input test is finished. Then,
the smart card computes internally with a pair P ′

which differers in exactly one bit from the input
point P and therefore if it does not check whether
the output is a point on E , it outputs d · P ′. From
theorem A (see B.1) we deduce that d · P ′ lies on
the same elliptic curve E ′ as P ′. Thus, we can de-
termine a′

5
such that the output d · P ′ satisfies the

curve equation with coefficients (a1, a2, a3, a4, a
′
5).

If these coefficients define an elliptic curve E ′, we
have reduced the original discrete logarithm prob-
lem on E to a discrete logarithm problem on E ′.
[12]

The point P ′, will differ only one bit from the
point P . An attacker can check all the possible
candidates P ′ and whether they belong to the el-
liptic curve E . If the point P ′ indeed lies on E ′ then

he has only to solve the discrete logarithm prob-
lem on E ′. First, he will compute ord(E ′), which
is the number of points on E ′ and it can be eas-
ily be computed by the use of algorithms for point
counting. If ord(E ′) has a small divisor r, then the
attacker can solve the discrete logarithm for the
points (ord(E ′)/r) · P ′

E′ and (d · (ord(E ′)/r)) · P ′

E′ .
This will give an equation d ≡ c mod(r) for some
value of c. Repeating the above procedure with dif-
ferent divisors r, the attacker can create an equa-
tion system again and compute the secret key d
using the Chinese Remainder Theorem (see B.2).

4.3 Countermeasures

The attacks that were described in this paper, de-
pend on the ability to disturb a point P on the
curve E , in order to generate an ordinary pair.
Thus, a smart card which is not designed to make
input and output checks is left unprotected and
vulnerable. Usually, most of the elliptic curve
cryptosystems that are implemented on tamper-
resistant devices check the input points for correct-
ness, but ignore the output points. However, it
is very important that smart cards check also the
computed and output points and in case these do
not satisfy the proper conditions, not to let them
leave the device. In this way, the possibility of se-
cret information leakage is decreased and the at-
tacks that were presented in the previous sections,
are ineffective.

An alternative way for protecting smart cards for
fault attacks is to include active protection. Ac-
tive protection encompasses mechanisms that check
whether tampering occurs and take countermea-
sures like having the smart card locked. There are
several different protection mechanisms that can be
applied to a smart card, such as light detectors, sup-
ply voltage detectors, frequency detectors and hard-
ware redundancy. Light detectors are able to de-
tect changes in the gradient of light and therefore
defend against optical attacks. Supply voltage de-
tectors can react to variations in the supply voltage
and can ascertain that only a tolerable voltage is
used, protecting this way the smart card from spike
attacks. Frequency detectors can ensure that the
operation speed is constant and thus can prevent
glitch attacks. Hardware redundancy is performing
recalculations a number of times by splitting the
calculation, using checksums or by doing the cal-
culation in different ways and afterwards verifying
the correctness. A great variation of options exist
here, depending on the allowed performance hit and
the transistors used. A protection against injected
faults is accomplished by trying to ensure that only
valid data are output.
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It is obvious, that various measures can be imple-
mented by the industry in order to provide tamper-
proof chips. Efficiently designed actions can be
taken to either prevent or at least make fault injec-
tion harder. Nevertheless, security is not the only
concern of the industry, as factors like computation
performance and implementation cost, are also un-
der consideration. Therefore, sometimes the adop-
tion and the enforcement of protection measure-
ments is sacrificed, leading to feasible fault attacks
and on the disclosure of the secret information.

5 Conclusions

Elliptic Curve Cryptography (ECC) is an efficient
and attractive technique that provides a high level
of security. Although the particular theory is more
than one decade old, cryptosystems based on el-
liptic curves are not yet widely adopted. How-
ever, ECC offers the computational and bandwidth
advantages at comparable security and this is the
reason that the industry has come to realize the
potentials of elliptic curves alternative. Elliptic
curve cryptosystems have already been introduced
on tamper-resistant devices, such as smart cards
and as it was expected, this has brought new secu-
rity concerns.

Fault attacks can be applied through several
methods by an attacker and a disclosure of secret
information that are stored inside a smart card,
is possible. Nevertheless, if security countermea-
sures are implemented during the design phase of a
smart card, then DFA attacks can be ineffective and
bound. The security features that a smart card in-
cludes would determine the level of security that the
device provides against fault attacks. Usually, de-
pending on the final usage of the smart card, differ-
ent factors are taken into account before implemen-
tation. Factors such as cost, performance impact,
computation complexity and security mechanisms
are evaluated from the designer and decisions are
made concerning the features provided to the card.

In conclusion, we can say that fault attacks con-
stitute a possible threat for smart cards that are im-
plementing elliptic curve cryptosystems. However,
the existing countermeasures are capable enough
for defending against such attacks, but are not al-
ways applied. The different priorities that the in-
dustry defines as design objectives, could easily ne-
glect the need for security countermeasures.
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Appendices

A Elliptic Curve Cryptosystems

In the 1980’s , V. Miller and N. Koblitz proposed a new public key cryptosystem using a group of points
on an elliptic curve. The points on an elliptic curve E over a finite field K form a commutative group.
The addition operation is really easy to implement and the the discrete logarithm problem in this group
is believed to be very difficult. [5, 6]

A.1 Comparison of cryptographic schemes

Figure 6: ”Time needed for breaking different public key schemes. [1, 2]”

MIPS = Millions Instructions Per Second.

A.2 Introduction to Elliptic Curve

The elliptic curve equation (Weierstrass equation), is defined as follows [4] :

y2 + axy + by = x3 + cx2 + dx + e

where a, b, c, d and e are real numbers satisfy some conditions which depends on the field it belongs
to, such as real number or finite field.

Furthermore, there is a point O called the point at infinity or zero point. The basic operation of the
elliptic curve is addition. To add points P1 and P2, which are both not at infinity, the following two
steps must be executed:

• a) Compute the line L through P1 and P2 (or tangent, if P1 = P2) and find the third point of
intersection with E . Let this be Q.

• b) The sum P1 + P2 is defined as P3 := - Q.

Definition of EC addition:

Let P be a point on an elliptic curve E , with O as point at infinity. Then, sum is defined as follows:

P + O = O + P = P

Further, let P1 = (x1, y1) and P2 = (x2, y2) be two points on E , both not O. Then the sum P1 + P2

is defined by,

• i) P3 = - Q, if x1 6= x2. Here Q is the third point of intersection of E with of the line L through
(x1, y1) and (x2, y2). (Figure 2)
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• ii) P3 = - Q, if P1 = P2 and the tangent line through P is a single tangent. Here Q is the third
point of intersection of E with of the tangent L through P. (Figure 3)

• iii) P3 = - P1, if P1 = P2 and the tangent line through P is a double tangent.

• iv) P3 = O, if P1 = - P2.

Figure 7: ”Addition for two different points P1 and P2.”

Figure 8: ”Addition for a tangent, where P1 = P2 = P. ”

B Theorems

In this section, some important theorems needed for the understanding of the main content of the paper
are presented. The subsection B.1, refers to a theorem that it is needed for the two attacks described
and the subsection B.2, presents the definition of the Chinese Remainder Theorem.

B.1 Theorems from the elliptic curve theory

Theorem A: Given a pair P = (x, y) ∈ P and a positive integer m. Assume that the tuple
(a1, a2, a3, a4, y

2 + a1xy + a3y − x3 − a2x
2 − a4x) defines an elliptic curve E ′ over K. Then any fast

multiplication type algorithm with input (m, P, a1, a2, a3, a4) computes the result m
⊗

P . Moreover,
we have the equality m

⊗
P = m · PE′ , where PE′ = P and m · PE′ , are points on E ′ and the latter is

computed with ”ordinary” point additions.
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B.2 Chinese Remainder Theorem

Let m, 1 ≤ i ≤ k, be k pairwise coprime integers. Further, let ai, 1 ≤ i ≤ k, be integers with
gcd(ai, mi) = 1. Then, the system of k simultaneous congruence relations,

aix ≡ bi mod(mi), 1 ≤ i ≤ k,

has a unique solution modulo
∏k

i=1
mi for all possible k-tuples of integers b1, b2, ... bk.

B.2.1 A simplified example

Suppose, that we want to solve using Chinese Remainder Theorem the following system,

d ≡ 6 mod(11), d ≡ 11 mod(13), d ≡ 16 mod(17)

i) Using the extended version of Euclid’s algorithm [4] for 11 and 13 x 17 = 221, we have:

gcd(221, 11) = gcd(11, 1) = gcd(1, 0) = 1

221 = (1) · 221 + (0) · 11
11 = (0) · 221 + (1) · 11
1 = (1) · 221 + (−20) · 11

ii) For 13 and 11x17 = 187, we have:

gcd(187, 13) = gcd(13, 5) = gcd(5, 3) = gcd(3, 2) = gcd(2, 1) = gcd(1, 0) = 1

187 = (1) · 187 + (0) · 13
13 = (0) · 187 + (1) · 13
5 = (1) · 187 + (−14) · 13
3 = (−2) · 187 + (29) · 13
2 = (3) · 187 + (−43) · 13
1 = (−5) · 187 + (72) · 13

iii) For 17 and 11x13 = 143, we have:

gcd(143, 17) = gcd(17, 7) = gcd(7, 3) = gcd(3, 1) = gcd(1, 0) = 1

143 = (1) · 143 + (0) · 17
17 = (0) · 143 + (1) · 17
7 = (1) · 143 + (−8) · 17
3 = (−2) · 143 + (17) · 17
1 = (5) · 143 + (−42) · 17

So, d ≡ 6 · (1) · 221 + 11 · (−5) · 187 + 16 · (5) · 143 ≡ 50 mod(11 · 13 · 17).
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