”0On the Way of Making Data Disappear”

Spyridon Antakis, Jo&l Stemmer
Henri Hambartsumyan, Louisa Papachristodoulou

University of Twente
Department of Mathematics & Computer Science
Enschede, The Netherlands, P.O. Box 217, 7500 AE
{s.antakis, h.hambartsumyan, l.p.papachristodoulou}@student.tue.nl
j.stemmer@student.utwente.nl

December 20, 2009

Abstract

As digital communication continuously evolves, several newborn privacy issues are coming onto
the surface. Most of the time, the transmitted data may include sensitive information that should not
be processed by third parties. However, at the time there are hardly any security guarantees and as
the phenomenon of Cloud Computing flourishes, a need for new protection mechanisms arises. This
paper discusses three of the existing techniques that aim to ensure the data privacy: i) Ephemerizer,
1) Timed-Ephemerizer and iii) Vanish. It performs a comparative assessment between the secu-
rity properties that these systems are able to deliver and it presents a demo implementation of the
Timed-Ephemerizer system. Finally, the paper concludes about the efficiency, the functionality, the
advantages and the disadvantages that these systems provide.

Keywords: Ephemerizer, Timed-FEphemerizer, Vanish, security, data storage, privacy.

1 Introduction

The fast growth of Cloud Computing and the new services which are offered to users, create a new
demand for advanced methods that will be able to ensure the data privacy. More precisely, there is a
great need for making data inaccessible under specific circumstances, since this is the only way to fulfill
some of the privacy requirements. Until now, there has been done research in this area which resulted in
a number of interesting solutions being proposed. This paper gives a brief introduction to the existing
systems and at the same time performs an in-depth analysis on their security properties. Finally, the
paper presents an implementation that was developed for one of the discussed systems, as a proof of
concept.

1.1 Existing Systems

In 2005, Radia Perlman introduced the idea of the Ephemerizer system [1]. The Ephemerizer was a
client-server approach that was meant to solve some of the critical privacy issues and aimed to constitute
data inaccessible permanently when it was not needed anymore. The main concept was based on the
destruction of cryptographic keys after a predefined time span. More precisely, it was suggested that the
management of the keys used for encryption and decryption of the data was to be performed by a server
called the Ephemerizer. The Ephemerizer was aimed to be the only one responsible for ensuring the
destruction of expired cryptographic keys after a selected time period. In this way, after the passage of
the desired expiration date the recovery of the data would become infeasible, regardless of the operations
performed on the clients side. Of course, in order for this to be possible, a number of assumptions have

been made about the management of generated cryptographic keys and the ways that data should be
stored. In practice, R. Perlman presented two main techniques in order to implement the Ephemerizer
system: i) Triple Encryption and ii) Blind Decryption. However, even if the author gave a complete
direction for the security properties that should be fulfilled by both approaches, the design did not
provide any formal security analysis for the described protocols.

As an extension on this first proposal and based also on the findings that were published in 2007 by
Nair et al. [2], a new variation of the Ephemerizer system was proposed. In 2009, Q. Tang presented an
interesting approach for the Ephemerizer system, called the Timed-Ephemerizer [4]. This new system
was mainly the result of a formal study of the security protocols that could be used for an Ephemerizer
implementation. In practice, the Timed-Ephemerizer combined two already existing approaches, the
Ephemerizer and Timed-Release Encryption, concluding in an original hybrid system. In comparison
to all other conducted surveys, Q. Tang performed a security analysis on a proposed security model
and he demonstrated through formalized proofs that his model is able to provide a number of security
guarantees that Ephemerizer was neglecting.

In 2009, Geambasu et al. presented a different system, called Vanish [4]. This system was aimed to
increase data privacy, by using a self-destruction technique for sensitive data. The main concept was
based on the usage of symmetric key encryption in addition with Shamir’s secret sharing approach. The
sensitive data was encrypted with a symmetric key, then this key was divided into a number of shares
and these shares were distributed among the nodes of a P2P network. The basic idea was that when a
significant subset of nodes leave the P2P network then the sensitive data would become unrecoverable,
since the reconstruction of the symmetric key would not be possible anymore. Even if Vanish was able to
achieve a number of goals that could be useful in the modern digital world, it was missing the ability to
provide a precise expiration time, which the Ephemerizer offered. Moreover, in late 2009, S. Wolchonsky
et al. [5] have discovered ways to defeat Vanish system with Low-Cost Sybil Attacks and more precisely
they demonstrated that Vanish is vulnerable, since the recovery of the symmetric key is feasible.

In the following sections, a description of these systems is presented and an overview of the provided
security properties that each method is able to deliver is given. Moreover, the effectiveness that its
design offers is discussed and the provided security guarantees are assessed. As a final outcome, a
demo implementation based on the Timed-FEphemerizer is presented and the levels of functionality and
efficiency that this application demonstrates are reported.

2 Description of the Systems

The Ephemerizer is a system that involves two entities, a trusted server called respectively the
Ephemerizer and a compatible client application that operates on the side of each user. Likewise, the
Timed-Ephemerizer system consists of these two entities that the Ephemerizer provides, but in addition
includes an extra entity, the time server. In this way, compared with the Ephemerizer, it enables users
to securely perform cryptographic operations only during a predefined time span and it constitutes a
tool which can enforce information life-cycle management in outsourcing activities. On the other hand,
Vanish is a totally different approach that aims to build a zero-effort system for the users, which will be
able to constitute data unreadable after a specified time. In practice, the main purpose of Vanish targets
on a global scale adoption system, which will make use of Distributed Hash Tables (DHTs), in order to
destroy the unneeded data. The following sections contain a brief introduction to the core operations of
each system and gives a better insight on their security features.

2.1 Ephemerizer - Triple Encryption

Triple encryption is the first proposed protocol for the Ephemerizer and its security is based on the
following assumptions, that R. Perlman made in [1]:

e The Ephemerizer possesses a long-term signing key and if this key is compromised, then the system
could recover by the means of a PKI revocation.

e The key on the receiver’s side is a long-term key and thus the communicated messages between
receiver and the Ephemerizer should be secured.

e The software which the sender and receiver are using is configured in such a way that no instance
of data is stored after cryptographic operations on the users side.

e The Ephemerizer’s private keys are stored in a tamper-resistant device, such as a smart card.

Ephemerizer

Communication
3 ghould be secure.

Figure 1: Triple Encryption

Suppose that Alice wants to send a message to Bob, by using the triple encryption protocol. As
it is presented above in figure 1, Alice will choose one of the tuples that the Ephemerizer advertises
based on the desired expiration date and she will verify if indeed the tuple is genuine, through the
Ephemerizer’s assigned signature. Of course, if at this point an attacker successfully compromises the
long-term signature key of the Ephemerizer, then he will be able to pretend the Ephemerizer in order to
fool Alice, until the signature key is revoked. However, the attacker will still not be able to read any of
the messages that were encrypted with an ephemeral key that expired before the compromise.

After Alice obtains the ephemeral key, she will compute a random secret key S,q,q4 and then she will
use this key to encrypt the message that she wants to send to Bob. Then, Alice will triple encrypt the
Srand key with Bob’s public key and the ephemeral key as follows : {{{Srand}B0bkey } Kepn } Bobjey and
she will send it to Bob, together with the communicated message {Mess} encrypted with the Sy.qnq key
and the corresponding identity IDg, , (figure 1 - step 2). The inner encryption performed with Bob’s
public key is very vital for the security of the protocol. If the Ephemerizer is dishonest and the public
key of Bob is not used, then the Ephemerizer will have knowledge of the random secret key S,4,q and by
simply eavesdropping the communication between Alice and Bob it will be able to obtain Alice’s original
message, by decrypting {Mess}S,qnd-

Upon receiving the transmitted messages, Bob will have to contact the Ephemerizer in order to recover
the random secret key that Alice used for encrypting the message. More precisely, Bob must decrypt the
triple encrypted tuple and send the decrypted part to the Ephemerizer, together with the corresponding
IDk,,,. Then, the Ephemerizer will check if the private key, which corresponds to I Dk, , has expired
and if not, it will decrypt the received part with the valid private key and send back to Bob the following
part: {Syana}Bobrey. After that, Bob will decrypt this part and he will obtain the random secret key
that Alice sent. In this way, he will finally be able to recover the original message. The communication
that takes place between the Ephemerizer and Bob, is of great importance for the security of the protocol.
If an attacker eavesdrops {{Srand}B0bkey } Kepn, then he can request from the Ephemerizer to decrypt
it and thus obtain the following {Syqna}Bobkey. In this way, by the initial assumption that Bob’s public
key is a long-term key and will not expire, it becomes obvious that an attacker at some point will be able
to recover Syqnd, due to coercion or Bob’s carelessness. A proposed way in order to solve this problem, is
either to use a protocol that is able to support perfect forward secrecy (e.g. IPSec’s IKE or SSL variant)
or secure the message exchange with the ephemeral key Ky, as described by R. Perlman in [1].

The fact that the Ephemerizer has to perform more than one decryption operation per message
exchange and the need for applying additional security protocols in parts of communication, may consti-
tute an efficiency drawback for a real implementation. The security that this protocol provides may be
sufficient under the stated assumptions, however the computation cost on the side of the Ephemerizer
should be properly considered. The triple encryption protocol involves quite expensive computations,

which will become even more severe when the number of users is relative large. Thus, in our opinion, a
number of implementation experiments should be performed in order to evaluate the efficiency that this
scheme is able to deliver and assess the effectiveness of the proposed security properties.

2.2 Ephemerizer - Blind Decryption

Blind decryption is the second protocol that was proposed by R. Perlman for the Ephemerizer imple-
mentation. It uses the concept of blinding signatures applied to encryption and decryption operations
and it is possible to be implemented either with asymmetric or symmetric cryptography, by using dif-
ferent methods [1]. More precisely, blind decryption is based on the ability to have inverse functions for
encryption and decryption and inverse functions for blinding and unblinding. In this way, the protocol
performs encryption + blinding to secure a message and decryption + unblinding to recover the message.
Blind decryption protocol is a design that makes use of this functionality and it is based on the following
security assumptions:

e The users should verify that ephemeral key is certified by the Ephemerizer’s long-term private key,
where the corresponding long-term public key is certified by a Trusted Third Party (TTP).

e There is no need for the Ephemerizer and the user to authenticate each other and there is no need
to protect the integrity of the ephemeral key transmitted between the users.

e The software which the sender and receiver are using, is configured in such a way that no instance
of data is stored after cryptographic operations on the users side.

e The Ephemerizer’s private keys are stored in a tamper-resistant device, such as a smart card.

Ephemerizer

Communication
should be secure.

i :
rj—k 2. {Mess}Srand, {{Srand}Keph}Bobkey, Keph L

Figure 2: Blind Decryption

Suppose that Alice wants to send a message to Bob by using the blind decryption scheme, as shown
in figure 2. Again, Alice will choose one of the tuples that the Ephemerizer advertises, based on the
desired expiration time for the ephemeral key. After that, Alice will validate that indeed the received
ephemeral key K.pp, is genuine and then she will be ready to send her message to Bob. She will generate
a random secret key S,qnq and she will encrypt her message with this key. Afterwards, she will also
encrypt the key Syqnq with the obtained ephemeral key and also with Bob’s public key. Finally, Alice
will send to Bob all the encrypted messages and the ephemeral key K., transmitted in the clear (figure
2 - step 2). On the reception of the transmitted messages, Bob will create a blind and unblind function
based on K.p;, and he will decrypt {{Srana}Kepn } Bobkey. Then, Bob will send to the Ephemerizer the
decrypted part blinded as follows Blind({Sana}HKepn), together with the corresponding 1Dk, ,. The
Ephemerizer after the reception of the messages, will certify that the ephemeral key with corresponding
identity IDk,,, has not expired and then it will decrypt the blinded message and send it back to Bob.
At this point, Bob will unblind the received message, obtaining the random secret key S;.qnq which will
give him the ability to decrypt Alice’s original message.

R. Perlman claimed that there is no need to protect the integrity of the ephemeral key [1]. She
mentioned that if an attacker successfully modifies the transmitted ephemeral key, that could only lead
to a denial service attack and not to the disclosure of the secret key S,.qnq- More precisely, the author
reported that if the K.,;, was not genuine, then Bob’s request to the Ephemerizer will fail, since the
Ephemerizer will not be able to decrypt the corresponding message. However, this is not entirely true
and it is based mainly on the assumption that Ephemerizer can always be trusted. According to [3], it
was shown that it is possible to recover the secret key S;qnq if the Ephemerizer is curious. In practice,
by eavesdropping the communication between Alice and Bob the Ephemerizer can successfully modify
Kepp in such a way, that when he receives the blinded message from Bob it will be able to recover the
secret key Spqnq. The critical point in this possible vulnerability is the fact that the ephemeral key Kpp
is only required to be certified by the private key of the Ephemerizer and a possible solution would be
to directly certify the ephemeral key from a Trusted Third Party (TTP) [3].

In comparison to the triple encryption scheme, blind decryption may be more efficient since the
Ephemerizer has only to perform one decryption. However, there are still efficiency drawbacks, since
the Ephemerizer is responsible for publishing and certifying all the potential ephemeral key to the users.
Considering also that a wide range of expiration times should exist, the task of providing an adequate
level of efficiency becomes even more fuzzy.

2.3 Timed-Ephemerizer

As it was already mentioned in the previous sections, Timed-Ephemerizer is a variation of Ephemerizer
which aims to guarantee that the data will only be available during a predefined time span. It includes an
additional entity called a time-server, which has the responsibility of publishing time-stamps periodically
and constitute the users able to access data during a valid time span. Of course, a trusted Ephemerizer
server is still required in order to periodically publish and revoke ephemeral public/private key pairs. In
practice, an Ephemerizer protocol is able to provide assured deletion, but not initial assured disclosure.
The inclusion of the time server assures an initial disclosure and completes the usability of the design in
a cloud computing environment.

At this point, someone could argue that there is no need for a time server, since the Ephemerizer
could be designed in such a way that will be possible also to release the desired timestamps. This
claim can be considered partially true, however as it was also mentioned in [3], by having a separation
of functionalities is possible to provide a higher-level of security for the implementation. The risk for
compromising either the time-server or both the time-server and Ephemerizer is reduced and by taking
into account also the fact that time server does no need to interact with the other entities, the design
for the Timed-Ephemerizer system could become safer.

Timed-Ephemerizer protocol ensures that even if an adversary compromises all the private keys of
the system, the data will be available only during a predefined time span. The proposed scheme [5],
applies the idea of blind decryption with some modifications and succeeds on constructing a functional
and secure Timed-Ephemerizer protocol. More precisely, it was proposed to first encrypt data using the
ephemeral public key of the Ephemerizer server and the public key of the time server and then re-encrypt
the produced ciphertext by using the public key of the user (e.g. Alice). Afterwards, the user (e.g. Bob)
would recover the data by decrypting the re-ecrypted ciphertext and obtaining in this way the ciphertext
created from the public keys of the two servers. After that, the user would send this ciphertext for
decryption in a re-randomized form based on the XOR operation to the Ephemerizer. On the reception
of the decrypted data that Ephemerizer would send, the user would apply again the re-randomization
and thus recover the original message.

In section 3, a demo implementation that was developed based on the Timed-Ephemerizer proposal,
will be presented and the operation of this protocol will be further analyzed. A description of a possible
real design will be given and all the security properties that must be considered during an implementation
phase will be discussed in detail. In this way, the reader will be able to comprehend in more depth the
features that this system is able to deliver.

2.4 Vanish

Vanish is a system that aims to automatically destruct any data that is no longer useful. The basic idea
behind the Vanish implementation is based on the peer-to-peer (P2P) infrastructures and in particular

in the large-scale Distributed Hash Tables (DTHs). By comparing Vanish with an Ephemerizer-based
design someone is able to reveal several differences. In [4], the authors stated that Vanish is a better
approach, since users with Vanish put their ¢{rust in an entire P2P network and not only in one entity,
such as the Ephemerizer. This assumption may be true, however the Vanish design lacks some important
features that Ephemerizer is able to provide.

By using an Ephemerizer-based design, it is possible to determine the desired expiration time for the
sensitive data, however with Vanish you cannot specify the precise time of expiration. The fact that
the recoverability of the symmetric key is based on the participation of P2P nodes, leads to two major
concerns with respect the balance between the privacy and the availability of the sensitive data. Imagine
a case in which the P2P nodes disconnect from the network earlier than what was expected. In such
a case, the sensitive data would become unavailable or unrecoverable even if they are still needed and
thus the property of availability will not be preserved. On the other hand, if we suppose that the P2P
nodes disconnect from the network later than what was expected, then in this case the sensitive data
would be recoverable or available, instead of being destroyed. Another consequence of relying in the P2P
nodes for recovering the symmetric key through the means of threshold cryptography, is the fact that
in case of a Denial of Service (DoS) attack on the P2P network itself, the Vanish system will become
unavailable and probably some of the sensitive data unrecoverable before the desired time. In contrast,
Ephemerizer-based designs are better protected against DoS attacks, since they are based on trusted
entities (e.g. Ephemerizer) and thus, such attacks are much harder to be successfully applied.

Finally, maybe the most important drawback for choosing the Vanish approach for ensuring the
privacy of sensitive data, is that the system was proved vulnerable in sybil attacks, against the used
DTHs [5]. More precisely, Geambasu et al. showed that Vanish in its current form cannot withstand
sybil attacks, which are referring to the existence of few malicious nodes inside the P2P network that
create a large number of identities in the DTHs. Usually, this kind of attacks depend on how easily
sybils can be generated and accepted as an input from other entities, when they do not have a chain
of trust linking them to a trusted entity. In the case of Vanish, was proved that sybils attacks are able
to successfully recover the symmetric key used and thus constitute the sensitive data accessible from
unauthorized entities.

Summarizing, we could say that Vanish at its current form is unable to provide the needed security
guarantees that such kind of systems are requiring. Moreover, in a general comparison with ephemerized-
based schemes, it seems much more unreliable and not ready to manage the delicate operation of de-
stroying sensitive data, according to the desired privacy needs that each user defines. However, it is a
promising idea that is worth to be researched further, taking into account all the recommendations that
have already been proposed for additional improvement.

3 A proof of concept

To demonstrate how an implementation of the Timed-Ephemerizer would work we have created a
proof of concept. Each of the applications will require at least one asymmetric key pair. The private keys
need to be kept safe and the public key will have to be published to each party. This involves a lot of
key management which falls out of the scope of this project. Therefore, the demonstration applications
either use a simplified form of asymmetric encryption or none at all. All applications will log the various
actions that take place, such as new connections being setup or messages being encrypted.

3.1 Time server

The time server has the responsibility of publishing timestamps which will be used by the all the
application as the time reference. It sole purpose is to publish accurate timestamps upon request. The
time server should have a public and private key pair which is used for signing every timestamp published.
Other parties can then verify that the timestamps were in fact generated by the time server. In this
proof of concept, the key pair generation and signing of messages is omitted for the sake of simplicity.

The response to a valid time query will always contain the current timestamp. In addition, if the times-
tamp supplied in the request, is a timestamp in the past (e.g. RequestedTimestamp < CurrentTime)
then the time server will respond with this timestamp. If it is a timestamp in the future, then a 0 will
be returned. See commands C2 and C3 in Table 1.

3.2 Ephemerizer server

The Ephemerizer server is responsible for encrypting and decrypting user messages. It will wait for
any incoming requests and process them. The Ephemerizer Server must be configured to use a time
server, otherwise it will refuse to do any encryption or decryption. When correctly configure and started,
the server will handle two types of requests, namely an encryption request and a decryption request.

3.2.1 Encryption

See commands C4 and C5 in Table 1. An encryption request consists of a disclosure timestamp, an
expiration timestamp and a plaintext message. The Ephemerizer will first validate the timestamps. The
expiration timestamp must be larger than the disclosure timestamp. If the expiration timestamp is in the
past, the encryption request will be denied and an error message will be returned. The Time server will
be queried each time the Ephemerizer needs the current timestamp. Because of delays in the network,
slight timing errors might occur. In extreme cases this could lead to encryption requests being denied
because the expiration time has been reached during the request. If the Ephemerizer is satisfied that the
timestamps are valid, it will use these timestamps to either generate a new key pair or use an existing
key pair. These asymmetric key pairs will be associated with the disclosure and expiration timestamps.
In practice, this means that every unique disclosure/expiration combination will result in a new key
pair being generated. Once they keys have been created, they are stored in a database along with their
corresponding timestamps. The plaintext message supplied in the request will then be encrypted using
the public part of this key pair. Finally an encryption response will be send back to the user containing
the ciphertext.

3.2.2 Decryption

See commands C'6 and C7 in Table 1. When the Ephemerizer receives a decryption request it will
first try to look up the corresponding key pair associated with this ciphertext. If no keys are found we
assume that they have expired and were deleted, the user is informed accordingly with an error message.
If however the database did contain this key, the corresponding timestamps are retrieved. With the help
of the Time server, these timestamps are checked. In the case that the disclosure time has been reached
and the expiration time not yet, the message is decrypted and the result is send back to the user. In
the case that the disclosure time has not yet been reached, an error message will be returned. Finally,
there is the possibility that the keys have expired. Even though expired keys are regularly purged from
the database, a key could have expired right after one of these checks. The Ephemerizer will delete this
entry from the database and respond to the client with an error message.

As described earlier, we have somewhat simplified the encryption and decryption. This way we will
not have the difficulty of generating, managing and publishing all the keys used during the operation of
the Ephemerizer Server. Since the database and protocol changed a lot during development we needed
an easy way to quickly encrypt or decrypt messages. We have therefore decided on the following dummy
encryption and decryption methods:

Keys are denoted as PK _xyz or SK _xyz for respectively the public part or secret part of an asymmet-
ric key. Encryption encloses the given plaintext in curly brackets and adds the key used for encryption
to the end, as shown in Equation 1. Decryption will remove the curly brackets again, but only if the key
supplied to the function is the inverse key of the one used for encryption, as shown in Equation 2.

encrypt("message",PK_a) = "{message}PK_a" (1)

decrypt("{message}PK a",SK.a) = "message" (2)

Consequently, by using these dummy methods, the Ephemerizer server can easily find the corre-
sponding keys for a ciphertext when handling a decryption request. However, when real encryption
and decryption is used, the protocol will have to be modified to include extra information about the
key that was used for encryption. Otherwise, the Ephemerizer would not be able to find the keys and
corresponding timestamps for the given ciphertext.

3.3 Client

The Ephemerizer client will be the actual application that will be distributed to all the users. Each
client will require its own key pair, of which the public part will be published to the other users. As
mentioned earlier, the usage of the asymmetric keys and the actual encryption is omitted. The Client
application allows the user to configure what Ephemerizer server will be used. It is important that the
users who will communicate use the same server.

The client has two input areas where data can be entered. On the left side is the data encryption
input, where the user can enter any text. The user must also indicate the preferred disclosure time and
date and the preferred expiration time and date. In this case, each selected timestamp will be accepted
by the server as long as they are valid. But it is probably more likely in a real world application that the
server uses buckets instead of exact timestamps, or uses a fixed set of timestamps, in which case the user
must be informed of the actual disclosure and expiration timestamps. When the user is satisfied with his
message and selected timestamps, the Encrypt button will initiate a new connection to the configured
Ephemerizer Server and send an encryption request as described in Section 3.2.1. When successful, the
ciphertext from the encryption response will be put in the right hand input field. This field is also used
for decryption. The user can enter any ciphertext in that field and press the Decrypt button. This will
again initiate a connection to the Ephemerizer Server and send a decryption request. If successful, the
resulting decrypted message will be put in the input field on the left. A messagebox will be shown when
an error has occured, describing the nature of the problem.

3.4 Protocol

The applications communicate with each other using a simple protocol. A single request can be made
for each connection. This means that after a TCP connection is made, a single line of text can be send.
Then the response will be send back, after which the connection will be closed again. The protocol
itself is done in ASCII text only, on a single line. All commands and parameters are separated by a
single space, with the exception of an error message (see Table 1). Data which contains multiple lines of
text or binary data will require to be encoded in Base64. If something goes wrong at any point during
the communication an error message will be send describing the problem. This can be due to several
problems such as an unknown command, a malformed message, unable to query the time server, unable
to encrypt or decrypt, et cetera.

Queries Time & Ephemerizer Time Server

Performs the
required

operations —— U
—_—
3. {Time} ! =

Communication
should be
secure.

2. {Current Time}

!,_ Communication
. - should be secure.

; 5. {Mess Kaph -
Alice - {Message}Kaph ’ L Bob

Figure 3: Protocol example

In order for the reader to better understand how the various parts of the system work together, we
take a closer look at the protocol as presented in Figure 3. Suppose Alice wants to send a message to

Bob that he is only able to read at a specific time span. Alice starts by creating a new message and
configuring the disclosure time and expiration time. She then sends an encryption request (step 1) to the
Ephemerizer server. The Ephemerizer in turn will accept this request and check the current time with
the time server (steps 2 & 3). If the expiration time is in the future, the server will look for an existing
key pair for these particular timestamps or create a new pair if one does not exist. The message from
Alice is then encrypted using the public part of this key and the resulting ciphertext is send back to Alice
(step 4). Alice can now send Bob the encrypted message (step 5). When Bob is ready to decrypt the
message, he will send a decryption request to the Ephemerizer containing the encrypted message (step
6). The Ephemerizer will then lookup the key used for encryption and the associated timestamps. After
querying the time server again (steps 2 & 3) and verifying that the disclosure time has been reached and
the expiration time has not been reached, it will decrypt the message. Finally, Bob will receive a reply
containing the original message (step 7).

Command and parameters Description
Cl | error <message> This is an error message. The
message contains a description of
the error.
C2 | time <timestamp> This is a time request. timestamp
must be a positive number.
C3 | timestamp <current> <timestamp> This is a time response. current

contains the current time,
timestamp contains the re-
quested timestamp if and only if
this timestamp is not in the future,
otherwise it is 0.

C4 | encrypt <disclosure> <expiration> <data> | Encryption request. disclosure
contains the timestamp when
the message can be disclosed.
expiration 1is the timestamp
when the decryption keys will be
destroyed, making the message
unrecoverable. data contains the
entire message, encoded in Base64.

C5 | encrypted <ciphertext> This is the encrypt response.
ciphertext is the ciphertext of
the original message, encrypted
with the keys associated with the
timestamps given in the encryption

request.

C6 | decrypt <ciphertext> The decryption request.
ciphertext is the encrypted
message.

C7 | decrypted <plaintext> The decryption response. If a key

pair associated with this message
has been found and the disclosure
time has passed, then plaintext
will contain the original message.
Note that no keys will be found for
an expired message, since these will
have been deleted.

Table 1: Communication protocol commands

3.5 Future Work

We have learned several things in the process of creating this proof of concept. The most obvious
is the lack of proper key management. The time server and client application are relatively easy to be
modified since they only require a single key pair. However, the Ephemerizer requires further investigation
and a proper key management proposal. The current solution is not scalable, since a new key pair is
generated for every new combination of disclosure and expiration times. This could quickly lead to
a performance bottle neck. It could also be the target of a Denial of Service attack. It is probably
better to let the Ephemerizer generate key pairs with a variety of disclosure and expiration times and
publish these together with their respective timestamps. The added benefit is that the client will then
be able to encrypt his own messages, by using the published public key for the timestamps he requires.
This releases the Ephemerizer from the encryption process and once a proper key management strategy
has been created, the time server should be updated to sign all published timestamps with his secret
key. This allows anyone to verify the timestamps. Finally, the users themselves will have to have their
personal key pairs so that messages can be exchanged securely between them. It will also enable the use
of triple encryption, so the content of the messages will not be exposed to the Ephemerizer.

While developing these demonstration applications, we have decided to use a certain protocol.
In retrospect, the protocol started to resemble the way the Hyper Text Transfer Protocol (HTTP) is
used. Therefore it is probably a good idea to use HT'TP in future applications. This in fact means the
time server and ephemerizer can be offered as a web service. All data could then be exchanged using
XML, which also supports encrypted documents. There are a wide variety of applications, programming
languages and frameworks to create these web services. This will allow you to focus more on the function-
ality itself and move away from the low level part of creating your own connections and communication
protocol. The communication in this proof of concept was deliberately not secured for testing purposes.
One could rely on VPN or SSH tunneling to set up secure connections, but when creating a web service
you would have the ability to make use of SSL for secure channels.

4 Conclusions

This paper discussed the most important conducted researches which were focusing on ways of data de-
struction for privacy reasons. More precisely, it presented three innovated systems, namely the Ephemer-
izer, Timed-Ephemerizer and Vanish. In the last section, the paper described a demo implementation
which was based on Timed-Ephemerizer and showed all the difficulties that arise when you have to apply
the theory in a functional application.

The needs of the digital world are changing rapidly and new privacy concerns arise. The already ex-
isting systems seem promising, nevertheless several concerns that must be evaluated are coming into the
surface. Apart from an effective security scheme, such systems should also be scalable and efficient. As
in every cryptographic implementation, the biggest challenge is to perform an efficient key management
and define the proper trust relations among the involved entities. All of the described systems included
a number of assumptions that in a real life implementation may be difficult to be fulfilled or sometimes
impossible. In practice, a prototype proposal should be always strictly connected to its possible trans-
formation into a real implementation. Most of the time, implementation requirements hide things that
cannot be predicted when a system is theoretical designed. A thorough investigation is always needed
and only then there is good possibility to develop an implementation that would be embraced by the
users’ community.

In conclusion, the idea of destroying the cryptographic key after a predefined timescale, in order
to constitute data unrecoverable, is really promising. However, there are many issues that should be
re-considered before these designs could be formally applied. In our opinion, a reference implementation
and additional research is needed with respect to both areas of security and effeciency in a real life
scenario. Only then would these systems have a chance to be adopted and evolve through time.

References

[1] R. Perlman, ”The Ephemerizer: Making Data Disappear”, Technical Report TR-2005-140, Sun
Microsystems, Inc., 2005.

10

[2] S. K. Nair, M. T. Dashti, B. Crispo, and A. S. Tanenbaum, "A Hybrid PKI-IBC Based Ephemerizer
System’, Proceedings of the IFTP TC-11 22nd International Information Security Conference (SEC
2007) ,Volume 232 of IFIP, pages 241252. Springer, 2007.

[3] Q. Tang, ”Timed-Ephemerizer: Make assured data appear and disappear”, In Proceeding of Public
Key Infrastructure, 5th European PKI Workshop: Theory and Practice (EuroPKI 2009).

[4] R. Geambasu, T. Kohno, A. Levy, and H. M. Levy, ”Vanish: Increasing Data Privacy with Self-
Destructing Data”, In Proc. of the 18th USENIX Security Symposium, 2009.

[5] S. Wolchoky, O. S. Hofmanny, N. Heninger, E. W. Felten, J. A. Hademan, C. J. Rossbach, B. Waters,
and E. Witchel, ”Defeating vanish with Low-Cost sybil attacks against large DHTs”, Technical
report, University of Texas, 2009.

11

