Security-Enhanced Linux in a Health Information
System

Louiza Papachristodoulou, Spyridon Antakis

Eindhoven University of Technology
Department of Mathematic & Computer Science
Den Dolech 2, P.O Box 513, 5600 MB Eindhoven
Email: {l . p. papachri st odoul ou, s. ant aki s}@t udent . t ue. nl

December 2, 2008

Abstract

This paper presents the security subsystem SELinux,
which implements a flexible mandatory access control
mechanism called Type Enforcement (TE), based on
a security architecture called Flask. Furthermore, it
analyzes basic features of the SELinux Policy Lan-
guage and proposes its application in a Health Infor-
mation System (HIS), in order to achieve the desired
security level that is required to protect so sensitive
databases. Finally, the advantages and disadvantages
of the usage of SELinux in a HIS Infrastructure will
be discussed and a conclusion on the efficiency of this
subsystem will be made, concerning mostly security
and privacy issues.

1 Introduction

The widespread adoption of Information Technology
(IT) in healthcare systems all over the world [4],
brings into the surface a lot of privacy related is-
sues. This movement from the traditional healthcare
system to a new electronic healthcare system depicts
the urgent need of effective design and management
of patient health information. FElectronic healthcare
systems aim to improve the quality of our life by
providing to the medical staff the ability of remotely
accessing medical records , usually through a public
network, such as the Internet. Recording information
electronically brings additional functionalities, such
as the ability to deliver health information in real
time to the point of care, when it is required for the
purpose of assisting in clinical decision making and

the reduction of medical errors.

Nevertheless, information stored within an electronic
Health Information System (HIS) is highly sensitive
by its nature. So, despite of all the benefits, elec-
tronic medical records create new security concerns.
In this sense, security, meaning the protection of data
integrity, availability, authentication, confidentiality
and privacy, are critical factors towards achieving cit-
izens trust and acceptance of health information sys-
tems. A security violation in a HIS requires an Op-
erating System (OS), which can enforce Mandatory
Access Control (MAC) rules, so that access to the re-
sources does not rely on the discretion of the users. In
this way, potential damages that arise from applica-
tions’ compromisation, such as unauthorised disclo-
sure or unauthorised alteration of individual health
information could be minimized and thus any pos-
sible disaster among healthcare providers and con-
sumers will be avoided. Several countries that have
already developed electronic health services, such as
Australia, the USA and the UK, had to overcome
information privacy violations or weaknesses, which
were found in their systems in the past.

The multi-user and resource-sharing environment, in
which HIS services are provided, imposes the need
to use the access control security mechanism, in or-
der to protect the data resources. A modern HIS
would normally consist of health application services,
middleware, Database Management System (DBMS),
data network control system, operating system and
hardware. The main interest is to protect the pa-
tient’s personal data, but the security in the appli-
cation space cannot exist without particular security
prerequisites at levels of hardware, operating systems

and any middleware sub-systems.

This paper focuses on the access control security
mechanism (operating system level), and more pre-
cisely suggests using the Security Enhanced Linux
(SELinuz) policy subsystem to a HIS. In section 2,
the Flask Architecture that SELinux uses, is briefly
presented and described. Moreover, an introduction
to Linux Security Module (LSM) is given, in order
to make it easier for the reader to understand how
SELinux enhances security in a Linux operating sys-
tem. In section 3, some basic features of SELinux
Policy Languge are presented and a short analysis of
each feature is made. In section 4, mechanisms that
SELinux could apply to a HIS are proposed, and the
advantages and disadvantages of usage of SELinux
security subsystem in a HIS are presented.

2 SELinux Mechanism

SELinux has its origins in an operating system se-
curity and microkernel research performed by the
U.S. National Security Agency’s research organiza-
tion. All those efforts of research led to the creation
of a new security architecture, called Flask . That
architecture supported a more flexible and dynamic
type of enforcement mechanism.[2] In the late 2000,
the NSA released a Flask based security system in
the Linux kernel with the name Security Enhanced
Linux. At the same period, a Linux Security Mod-
ule (LSM) [3] project was started in order to create
a flexible framework that will allow different security
extensions to be added to Linux. After a while, NSA
started to adapt SELinux to use the LSM framework.
In general, SELinux subsystem implements a flexible
mandatory access control (MAC) mechanism called
type enforcement (TE). From a puristic perspec-
tive, SELinux provides a hybrid of concepts and
capabilities drawn from mandatory access controls,
mandatory integrity controls, role-based access con-
trol (RBAC) [13], and type enforcement architecture.
As you will see, type enforcement provides strong
mandatory security in a form that is adaptable to
a large variety of security goals, concurrently. Type
enforcement provides a mean to control access down
to the individual program level, in a manner that
allows an organization to define a security policy ap-
propriate for their systems. In TE, all subjects and
objects have a type identifier associated with them.
To access an object, the subject’s type must be au-
thorized for the object’s type, regardless of the user
identity of the subject. SELinux brings flexible TE

along with a form of role-based access control and
the optional addition of traditional Multi-Level Se-
curity (MLS) [11] [12] to Linux. This flexible and
adaptable MAC security, built in to the mainstream
Linux operating system, is what makes SELinux such
a promising technology for improved security.

2.1 Flask Architecture

The Flask Architecture [2], as shown in Figure 1,
describes the interactions between subsystems that
enforce security policy decisions and a subsystem
which makes those decisions, and the requirements
on the components within each subsystem. The
primary goal of the architecture is to provide flex-
ibility in the security policy by ensuring that these
subsystems always have a consistent view of policy
decisions regardless of how those decisions are made
or how they may change over time. Furthermore, this
architecture includes an application transparency,
a defense-in-depth, an ease of assurance, and a
minimal performance impact.

Components which enforce security policy decisions
are referred as object managers. Components which
provide security decisions to the object managers
are referred as security servers. The decision making
subsystem may include other components such
as administrative interfaces and policy databases,
but the interfaces among these components are
policy-dependent and are therefore not addressed by
the architecture.

Client

Object Request l

Query =
o Security Server
>

Security
«—F :
Policy

Decision

Object Manager

Policy
Enforcement

Enforcement { Policy

Figure 1: The Flask Architecture

Moreover, flask security architecture provides sev-
eral primary elements to the object managers such as,
interfaces for retrieving access, labeling and polyin-
stantiation decisions from a security server. The ac-
cess decisions specify whether a particular permission

is granted between a subject and an object, the la-
beling decisions specify the security attributes that
should be assigned to an object, and the polyinstan-
tiation decisions specify which member of a polyin-
stantiated set of resources should be accessed for a
particular request. Furthermore, a vital Access Vec-
tor Cache (AVC) module is implemented, that allows
the object manager to cache access decisions and thus
minimize the performance overhead. Finally, a help-
ful extra ability of registration is present, in order to
receive notifications of changes to the security policy.
Hence, we conclude that object managers are respon-
sible for defining a mechanism for assigning labels to
their objects and specifying a control policy of how
security decisions will be used to control the services
provided. This control policy addresses threats in the
most general fashion by providing the security policy
with control over all services provided by the object
manager and by permitting these controls to be con-
figured, based on threat. Thus, each object manager
must define handling routines which will be called in
response to policy changes.

2.2 Linux Security Module (LSM)

The Linuz Security Module (LSM) project addresses
the problem of utilizing the advanced features of the
newly implemented security mechanisms in the ex-
isting systems by providing the Linux kernel with a
general purpose framework for access control. LSM
enables loading enhanced security policies as kernel
modules and aims to extend to widespread deploy-
ment of security hardened systems, by providing linux
with a standard API for policy enforcement modules.
Software vulnerabilities can be mitigated by effective
use of access controls. Discretionary access controls
(DAC) are adequate for user management, but are
not sufficient to protect systems from attack. Ex-
tensive research in non-discretionary access control
models has been done for over thirty years, but there
has been no real consensus on which is the one true
access control model. Because of this lack of consen-
sus, there are many patches to the Linux kernel that
provide enhanced access controls, but none of them
is a standard part of the Linux kernel.

The Linux Security Module (LSM) project seeks to
solve this Tower of Babel quandry by providing a gen-
eral purpose framework for security policy modules.
This allows many different access control models to
be implemented as loadable kernel modules, enabling
multiple threads of security policy engine develop-
ment to proceed independently of the main Linux

kernel. SELinux is one of the most famous enhanced
access control implementations that has already been
adapted to use the LSM framework. The many char-
acteristics that LSM provides, such as the true gener-
icity, the ability to support the logic capabilities, the
conceptual simplicity, the minimal invasiveness, and
the general efficieciency that delivers, seem ideal for
a security subsystem such as SELinux.

User Level Process

| User Space

¢ Kernel Space
Open System Call
v
Look up inode
v
Error checks
v

LSM Module
DAC checks Policy Engine
v
"0k with you?”
LSM hook 5 i.e. SELinux
v YES or NO

Complete Request
l Access

inode

Figure 2: The Linux Security Module

To achieve these goals, while remaining agnostic
with respect to styles of access control mediation,
LSM takes the approach of mediating access to the
kernel’s internal objects: tasks, inodes, open files, etc.
As shown in figure 2, the system call of a process-
execution traverses the Linux kernel’s existing logic
for finding and allocating resources, performing error
checking and passing the unix DAC. Afterwards, the
LSM hook requests the permissions from the security
module, (in our case SELinux) in order to allow the
access to the internal object and take the security pol-
icy decision. Finally, based on the response and the
retrieved access permissions from the security mod-
ule and the DAC checks, the system will determine
whether the initial request will succeed or fail.

3 SELinux Policy Language

This section presents the basic characteristics of the
SELinux policy language. It tries to analyze and ex-
plain the most important policy language features,
like the Object classes and Permissions, the Type
Enforcement (TE) , the Multi-Level Security (MLS)

[7] [10] and the Roles and Users. Furthermore, it
presents the two different methods of managing the
policy language build process, Fzxample Policy and
Reference Policy.[7]

3.1 Object Classes & Permissions

SELinux, in order to apply the access enforcement
mechanism in the kernel, is using object classes and
their associated permissions as part of the policy lan-
guage. Object classes are nothing more than the rep-
resentation of categories, such as files, processes, di-
rectories and sockets. There is a corresponding object
class for every kind of system resource. Permissions
represent accesses to these resources, such as opening,
writing, reading, executing and sending. An instance
of an object class is simply called an object. An ob-
ject class refers to the entire category of resources,
in contrast to the object that refers to a specific in-
stance of the object class. The set of permissions
defined for an object class is also known as access
vector. In SELinux, two types of permissions are de-
fined, common permissions and class-specific permis-
sions. Common permissions are a set of permissions
shared by more than one object class. They are asso-
ciated with the object classes as a group using the ac-
cess vector. Class-specific permissions allow us to de-
clare permissions specific to an object class alone. In
general, an object class may have only class-specific
permissions or only common permissions, and some
times may have both. The access vector represents
all the possible access that can be allowed to the re-
sources represented by that object class. The set of
object classes available depends always on the version
of SELinux and its Linux kernel. Understanding ob-
ject classes and permissions is really difficult and re-
quires a good knowledge of both SELinux and Linux
operating system.

3.2 Type Enforcement (TE)

The main part of SELinux policy is a set of state-
ments and rules that define the type enforcement
(TE) policy. TE rules express all the allowed ac-
cess to resources exposed by the Linux kernel. So,
an access attempt by a process to a file will succeed,
only if there is at least one TE rule allowing that ac-
cess. Thus, considering the number of processes and
resources that a modern Linux system has, a well-
defined and strict TE policy can contain thousands
of TE rules. The rules are not so complex and they
all fall into two basic categories, access vector (AV)

and type rules. The AV rules are used to allow or
audit access between two types and the type rules
to control default labeling decisions. One of the most
important concepts of SELinux is that TE rules asso-
ciate privileges and accesses with programs and not
users. In this way a program can be restricted to
the minimum access permissions required to function
properly, so that even if it malfunctions or has been
exploited, the security of the system is not entirely
compromised.The basic building blocks for TE rules,
are the types. SELinux uses types to determine what
access is allowed. Also there are some other policy
features, attributes and aliases that contribute to the
management and use of types. Attributes are used to
refer to a group of types with a single identifier, and
aliases are a convenience mechanism that allows to
define alternate names for a type.

3.3 Multi-Level Security (MLS)

SELinux was modified within the definition of the
Flask architecture, in order to improve MLS support
and to make it more responsive to real world MLS
requirements and more compatible with other MLS
systems. At the time, SELinux provides optional sup-
port for Multi-Level Security (MLS). Although type
enforcement remains the fundamental access control
mechanism of SELinux, we can also enable the op-
tional MLS features to provide additional MLS-style
mandatory access controls. MLS is another form of
mandatory access control that is applicable to some
security problems, especially those associated with
high-classified data control. In SELinux, MLS is an
optional extension to type enforcement and you can-
not have MLS features without it. [11] [12]

3.4 Roles and Users

SELinux does not entirely ignore the roles and users.
Roles and users exist in SELinux as the basis for its
RBAC feature. It is possible for the policy to specify
multiple domain types with different sets of privileges
for the same program, based on the user who runs the
program. Nonetheless, the level of access control is
still based on the program’s domain type and not the
user’s privileges. The security features of most other
mainstream operating systems are mostly centered
on granting access to users, either directly or through
some form of group or role mechanism. This situa-
tion is completely different in SELinux, where access
is not granted directly to users or roles. Roles act

as a supporting feature to type enforcement, and to-
gether with users provide a mean to bind type-based
access control with Linux users and the programs
they are allowed to run. RBAC in SELinux further
constrains type enforcement by defining the relation-
ship between domain types and users to control Linux
users’ privileges and access permissions. RBAC does
not allow access, but, as always in SELinux, allowed
access is the providence of type enforcement.

3.5 SELinux Security Policies

The composition of all the elements of the SELinux
policy language, in order to create a complete and
comprehensive security policy, that meets all the ex-
pected security goals, can be a really difficult task for
the policy writer, who tries to implement the SELinux
policy language. Therefore, the methods for build-
ing security policies are rapidly changing and evolv-
ing. In SELinux, it is possible to choose between
two different methods for creating and modifying the
policies. This section tries to briefly describe and
summarize the most important characteristics of each
method.

3.5.1 Example Policy

Example Policy has been released by NSA and
through the years has been evolved by the community
development. It is the oldest and the most complex
method for building the policy in SELinux.

The important enhancement that this method has,
is the ability to build both strict and targeted poli-
cies. Strict policy makes maximum use of SELinux
to provide seperate domain types for each program.
The strict policy causes breakage with existing Linux
applications, which expect looser security controls.
Thus, for many users, these annoying application
breakages were an unacceptable trade-off for in-
creased security. Target policy, was created in order
to solve the strict policy concern. It was derived from
the strict example policy and aims to use SELinux to
isolate high-risk system services from the rest of the
system. Only the targeted services have enhanced
restrictions, while all the other programs run in an
unconfined domain that essentially neutralizes the
enhanced security of SELinux. It is obvious, that
the main difference between strict and target policies
is that the target policy limits the permission sets
of a few outwardly vulnerable services and provides
no extra limits for local users and programs, while
strict policy defines permission sets for all users and

most applications and services, without distinguish-
ing them regarding their risk levels. [7]

3.5.2 Reference Policy

The major problem of Example Policy is the fact that
it is really difficult to understand, develop, and main-
tain the policy, unless you are an expert with the
SELinux enforcement mechanism and the policy lan-
guage. A policy writer should have detailed knowl-
edge of the entire policy, in order to use it as the
basis of new application policy modules. To over-
come this problem, the Tresys Technology started a
project called Reference Policy. This project tries
to refactor the community knowledge gained through
evolution of the NSA example policy, into a form that
exhibits many of the strengths and features of mod-
ern software engineering, thereby making the policy
more maintainable, verifiable and usable. Reference
Policy simplifies the Fxample Policy for SELinux and
is using modularity, layering, encapsulation, and ab-
straction. The main goal of such a reconstruction of
the policy already used, is to allow greater adoption
and adaption of SELinux by increasing the ability to
validate the security properties of a given SELinux
policy. [15] [16]

4 SELinux in a Health Informa-
tion System

In a HIS there are many different kinds of applica-
tions involved, which most of the times need to in-
teract with different access rights in several sensitive
data. The high-grained level of control, the ability
to change the security level of blocks of data and the
ability to change policies in abnormal circumstances
are some basic prerequisites that every security mech-
anism applied to a HIS must fulfill.[6] So, this sec-
tion tries to describe mechanisms that SELinux pro-
vides, in order to ensure these HIS prerequisites. A
source coding of the language or any implementa-
tion of those mechanisms are out of the scope of this
paper, since they depend exclusively on the require-
ments of a specific case and they cannot be developed
in a general sense.

4.1 High-grained Level of Control

SELinux policy language is capable to enforce a do-
main separation at the application layer, known also

as sandboxing. Sandbozing is efficient enough to en-
sure that common attacks to the system will fail or
at least will be controlled and bounded. Thus, se-
curing HIS applications inside a sandbox is possi-
ble using SELinux policy. Usually, applications such
as web-healthcare-applications, which are often used
in a HIS, could be controlled and restricted through
SELinux Policy.

In SELinux, the policy writer is able to declare
separate domains for each of the web-healthcare-
applications and is also able to control the web-server
(i.e. apache), the database-server (i.e. SQL) and all
the other processes/daemons that interact with the
web-healthcare-application. Moreover, the fact that
SELinux policy language supports conditional poli-
cies, makes the HIS policy writer able to set con-
ditional policy statements and enable policy rules
only under specific circumstances, in which they are
needed. Hence, we could say that SELinux provides
a really high-grained level of control at operating-
system level, as it is able to control and restrict every
process running on Linux operating system, letting
the HIS policy writer to modify and edit the existing
policy files based on the specific HIS needs each time.

4.2 Change the of

Blocks of Data

Security-Level

Application data tends to be much more dynamic and
flexible than data at the level of the operating-system.
Since SELinux provides security mechanisms for the
operation-system level, the dynamic modification of
data in a higher level than this, is the most important
issue that SELinux administrators have to deal with.
As the change of the security level of block of data is
related to whether a specific user is authorised to ac-
cess these data or not, the most appropriate approach
to fulfill this requirement of HIS is from the scope of
users and their permissions to the database. There
may be many users of an application level database,
while the number of owners of operating system pro-
cesses tends to be very small. By default, SELinux
is configured for four users, including system, staff,
sys-admin and ordinary users. Adding new users
or new rules for interactions between domains and
types require recompiling and reloading the configu-
ration policy. The fact that operating-system level
relationships tend to be very static, for example they
should change only when new software is installed, is
neither a disadvantage for the normal use cases for
SELinux, nor well suited for creating rapidly chang-

ing sandboxes. Furthermore, the targeted policy does
not permit application level sandboxes, because all
application processes run in the unconfined domain
and therefore any system supporting application level
security is compelled to run in strict mode.

A solution to this complex problem, which also pre-
vents the problem of creating additional complex in-
teractions between application and operating system
level objects, is to create a proxy. The proxy [17] can
be viewed as a micro-instance of SELinux, that deals
only with application data, and it has the following
features:

e runs at the application level and is secured in its
own sandbox by SELinux, preventing unwanted
interactions with other processes.

e regulates access by application level processes to
protected data, using its own set of configuration
files.

e deals with the added levels of interaction com-
plexity at the application layer by using an en-
hanced version of RBAC, in which role permis-
sions are inherited throughout a hierarchy.

In one sense, this solution can be viewed as nested
SELinux, whereby operating system level processes
see only a monolithic object (the proxy) represent-
ing application processes, meaning that the number
of configuration rules between the two layers is linear
rather than multiplicative. Furthermore, by collating
roles into hierarchy and associating the lowest mem-
ber of each hierarchy with each type, the need to
associate every role with every type is obviated.

As an example, a vertical slice of a role hierarchy may
consist of ”Doctor” is a subset of role ” Clinician” and
”Surgeon” is a subset of role ”Doctor”. Configuring
the policy with any user in the role of ” Clinician” has
access to type y automatically covers the rules for any
user in the role of ”Doctor” has access to type y and
any user in the role of ”Surgeon” has access to type
y by virtue of their membership of the family. Por-
tions of the hierarchy can be overridden: configuring
any user in the role of ”Surgeon” not to have access
to type y, does not cause a contradiction, but allows
only ”Clinicians” and ”Doctors” to access type ¥.
Actually, SELinux uses a primitive version of RBAC
and supports a variant of RBAC, to associate indi-
vidual users with specific types, and to disassociate
individuals operating in different roles. The standard
form of the domain and object contexts are User with
Role owning Type.

This allows the system to differentiate between Doc-
tor W accessing the internet using a web-browser,
and the same Doctor W using a medical application.
In the former case, sensitive medical records pertain-
ing to Doctor W’s patients should be inaccessible. So
although the same user is involved, the combination
of user and roles, in which he or she is involved, is
not. Again, RBAC is an appropriate mechanism to
secure this kind of data. However, the level of granu-
larity of SELinux is high, but medical databases sup-
port records have varying privileges, which have a
much finer level of granularity. Consequently, it is
also responsibility of the medical application to en-
sure that its records are not accessed by clinicians
with inappropriate levels of authority. Role hierar-
chies have been previously proven useful in flexibly
defining record access in medical scenarios, but are
unsupported in SELinux.

4.3 Change Policies in Abnormal Cir-
cumstances

One of the properties, the SELinux policy should sat-
isfy, in order to be adequate for security of HIS, is the
ability to change policies in abnormal circumstances.
The ways, in which this requirement can fulfilled is
descripted in this section.
There are some cases, when records must be accessi-
ble even in the absence of legitime credentials. For ex-
ample, in cases that the patient is unconcious or if the
authorized viewer of a patient’s case is not present,
but the patient needs emergency treatment, then the
availability of the information is more important than
its privacy. In both cases, there would be no time to
rewrite the security policies, but the ability to switch
to another policy set to suit the emergency scenario
would be beneficial. This could be facilitated by a
Risk Assessment Unit, shown in figure 3, which is
a unit that evaluates the risk and the emergency of
a situation. When the data are proved sufficient to
change to emergency mode, then irrespective of the
level of security, all underlying activities are audited.
If the HIS includes a proxy mechanism, which we
described in the previous section, it is also possible to
audit the medical records in abnormal circumstances.
The proxy is programmed to respond to a special role
of Emergency, in which case it moves into auditing
mode, until a new set of credentials with a differing
role is provided. In auditing mode, all records can be
accessed and modified, but each action is recorded
for review by the security administrator, so that in-

Client

I

System —> Proxy

Risk 5
Assessment | o <— Server
Unit “Emergency”

Status

Local
Policy

Proxy Sandbox
Database

SELinux T

Policy
—> | SELinux

(MAC)

Figure 3: Risk Assessment Unit

appropriate use of these data could be recognised and
punished.

4.4 Can SELinux be trusted in a HIS

In the subsection 4.2 we described in which extend
the implementation of SELinux in a HIS can fulfill
its three basic requirements. At this point, we will
examine the effectiveness and the weaknesses, that
must be considered, before applying SELinux into a
HIS.

Firstly, we could say that the fine-grained flexibility
provided by SELinux at the level of files and sockets
and its architectural modularity seem to offer a high-
grained level of control and a high level security in
application data. In this sense, the security of sensi-
tive data, such as the health records, is guarantered.
On the other hand, the fact that the SELinux offers
a fine-grained flexibility can also be a disadvantage.
In order to provide this feature, a configuration file
of about 50.000 lines long must be dynamically main-
tained. Therefore, reconfiguring the policy or solving
problems caused by bugs can be a difficult task for
the SELinux administrator. Considering also the fact
that SELinux is an open source project and is avail-
able for different Linux OS distributions (Fedora, Red
Hat, Debian, etc.), that maintain their own configu-
ration file, this task becomes even more tedious.
Secondly, when it comes to the need of changing the
security level of blocks of data, SELinux seems to be
inappropriate. Although this feature is provided by
SELinux using RBAC5, it is difficult to be config-
ured. As it is mentioned in 4.2, SELinux uses only
a form of RBAC model, but it is limited supported
and complex at the time. Furthermore, the need of
recompiling after adding new roles & users is a seri-

ous impediment to the success of an enterprise system
such as HIS.

Finally, looking at how SELinux handles the change
of policies in abnormal circumstances, we could say
that is capable enough to support and monitor them,
through a Risk Assessment Unit which facilitates this
whole procedure. Just an override function has to be
accomodated in SELinux, so that an unauthorized
user gains temporary access in a health record, un-
der situations of emergency.

Taking a general glance into SELinux, it is clear that
the advantages and disadvantages of this security
subsystem can be expressed in terms of the purpose
and the security requirements of the system, in which
it is implemented. Nevertheless, there are some gen-
eral advantages and disadvantages, that come from
the implementation of SELinux. The main advantage
of SELinux is the seperation between policy logic and
security enforcement, which improves expressiveness
and effectiveness in decision making. But SELinux
is usually associated with inconvenience security and
lost of productivity, due to the difficulty of reconfig-
uring the SELinux policy language. Of course, this
last disadvantage of SELinux, does not mean that it
can not be trusted for a HIS, it means only that it is a
complex subsystem on Linux OS that needs a special
and careful administration.

5 Conclusions

This paper tried to analyze and decide whether the
SELinux subsystem could be efficient enough to se-
cure the sensitive data of a Health Information Sys-
tem (HIS). As already mentioned, securing efficiently
a HIS Infrastructure involves the effort to secure all
levels of this system, such as application level, oper-
ating system level, hardware level and thus a sepa-
rate approach must be made, concerning security for
each of these levels. This paper focused on the op-
erating system level and specifically on the SELinux
subsystem, which could be consisted as a module on
a Linux distribution through Linux Security Module.
It is concluded that, despite of the security flexibility
and the detachment of the policy enforcement from
the policy configuration logic that SELinux provides,
it is still too complex and difficult in implementa-
tion. A HIS administrator must be as sure as pos-
sible for the security of its system and must be able
to maintain the security easily and dynamically with-
out much effort. Without a doubt, the granularity of
SELinux is sufficient to elegantly secure application

data, but this is not enough and unfortunately fur-
ther mechanisms are required in the application layer.
SELinux, should provide support for RBAC, in a dif-
ferent form, allowing inherited permissions and sim-
plifying SELinuxs notoriously complex configuration
process. Furthermore, it should have a graceful mech-
anism for handling changes within policies, in order
to administrate highly dynamic environment, such as
a HIS. Also, SELinux must definitely provide a sat-
isfactory mechanism to change policies when circum-
stances change, without requiring strong auditing ac-
tions. At this time, SELinux seems a very promising
security system, but more research needs to be done,
in order to improve and facilitate the way SELinux
can be implemented in systems in the extended en-
terprise. Indeed, there are some efforts made in this
direction by Tresys Technology [15], that tries to im-
plement the Reference Policy in SELinux, in order to
reconstruct in a simplified way the SELinux policy
already used. As SELinux becomes more popular,
it gains positive treatment from the public commu-
nity and the enterprise industry, and therefore it is
expected to be more trusted and efficiently imple-
mented in HIS in the future.

References

[1] Peter G.Goldschmidt, (2005), ”HIT & MIS: Im-
plications of Health Information Technology and
Medical Information Systems”.

[2] Michael Hafner, Mukhtiar Memon and Muham-
mad Alam, (2008), "Modeling and Enforcing
Advanced Access Control. Policies in Healthcare
Systems with SECTET”, University of Inns-
bruck, Austria

[3] GAO, (2006), ”Information Security: Depart-
ment of Health and Human Services Needs to
Fully Implement Its Program”, United States
Government Accountability Office.

[4] OpenClinical - Knowledge Management for
Medical Care, ”"Health Information Tech-
nology adoption, programmes and plans:
Europe (European Union)”. ,(Accessed:
22/11/2008), http://ww. openclinical .

or g/ hi t d obal Eur opeEU. ht m

[5] Vicky Liu, Lauren May, William Caelli and Pe-
ter Croll, (2007), ”A Sustainable Approach to
Security and Privacy in Health Information Sys-
tems”, Queensland University of Technology.

[6]

[10]

[11]

[16]

[17]

Matt Henricksen, William Caelli, Peter Croll,
(2007), ”Security Grid Data Mandatory Ac-
cess Control”, Information Security Institute,
Queensland University of Technology.

Frank Mayer,, Karl MacMillan,, David Cap,
(2006), ”"SELinux by Example: Using Security
Enhanced Linux ”, Prentice Hall.

R. Spencer, S.Smalley, P.Loscocco, M.Hibler,
D.Andersen, and J.Lepreau, (August 1999),
"The Flask Security Architecture: System Sup-
port for Diverse Security Policies.”, In Proceed-
ings of the Eighth USENIX Security Symposium.

Chris Wright, Crispin Cowan, James Morris,
Stephen Smalley, Greg Kroah-Hartman, (2002),
"Linux Security Module Framework”, WireX
Communications, Inc., Intercode Pty Ltd, NAI
Labs, Network Associates, Inc., IBM Linux
Technology Center.

Stephen Smalley, (2002), ”Configuring the
SELinux Policy”, Trusted Computer Solutions
Inc.

D.E.Bell and L.J.La Padula, (May 1973), ”Se-
cure Computer System: Mathematical Foun-
dations and Model”, Technical Report M74-
244, The MITRE Corporation, Bedford.

Chad Hanson, (2006), ”SELinux and MLS:
Putting the Pieces Together”, Trusted Com-
puter Solutions Inc.

D.F.Ferraiolo, J.A.Cugini and D.R.Kuhn,
(1995), "Role-Based Access Control (RBAC):
Features and Motivations”, In Proceedings of
the 11th Annual Computer Security Applica-
tions Conference.

Bill McCarty, (2004), ”SELinux NSA’s Open
Source Security Enhanced Linux”, O’Reilly.

Tresys Technology - Open Source Software, ” Se-
curity Enhanced Linux Reference Policy”. ,(Ac-
cessed: 25/11/2008), http://oss.tresys.
coni docs/ ref policy/api/

Christopher J.PeBenito, Frank Mayer, Karl
MacMillan, (2006), ”Reference Policy for Se-
curity Enhanced Linux”, Tresys Technology.

Peter R.Croll, Matt Henricksen, Bill Caelli and
Vicky Liu, (2007), ”Utilizing SE Linux to

Mandate Ultra-secure Access Control of Med-
ical Records”, Information Security Institute,
Queensland University of Technology, Brisbane,
Australia.

