
When agile fails, a hotfix is not enough

"Proposing the MAD model"

by

Spyridon Antakis
spyros@loonydesk.com

September 11, 2013

Abstract

It is incredibly confusing how sometimes companies try to apply Agile Development and how they
terribly fail to do so. There is no comprehension of what they define as their ”own agile development”
and certainly the chosen structure is at best unstable. This paper analyses the situation with a pure
engineering insight, leaving out of the picture all the micro and macro management processes. Finally,
it challenges the fixed model that exists in most of the companies, which sets Agile development as the
one and only panacea for everybody to follow”. In that attempt, it proposes the Manager, Architect
and Developers (MAD) model, purely inspired from different aspects of real life examples.

1 Introduction

When in June 2001, a group of developers came
up with a lightweight development method, they
were just trying to solve their own problems in the
area of software development. They defined some
very basic and important principles that should be
followed during development and they published
the so called:

Manifesto for Agile Software Development [1] [2]

Individuals & Interactions
over

Processes & Tools

--------------------------------

Working Software
over

Comprehensive Documentation

--------------------------------

Customer Collaboration
over

Contract Negotiation

--------------------------------

Responding to Change
over

Following a Plan

The manifesto states that while there is
value in the items appear on the bottom of the
above list, the items that appear on the top are
considered to be more valuable. There is no doubt
that the agile principles amplify a more flexible
culture around software lifecycle and prioritize
business reasons against time consuming processes.
But a quote from the past, wisely recalls:

”In theory, there is no difference between theory
and practice. In practice there is.”

Unfortunately, the agile model a decade after its
first appearance, became another heavy industry.
Expensive commercial tools, strict unnecessary
processes, companies offering consultancy to a
model that paradoxically enough, was targeting
to simplify things. Victims of a system that is hard
to change, in a period that software engineering
explodes. Unfortunately, billion dollar companies
are left with no time to reconsider their approaches
from inside out and adjust a productive bottom-up
development model based on their needs. Creating
extremely frustrating environments that they are
desperately trying to be agile, like there is no
tomorrow if they choose not to be.

1



2 Agile as a bottleneck

Unavoidably, every company needs to have
a process in place for a successful software
development lifecycle. It seems that the majority
generally acknowledges that Agile Development
could be very efficient. However, only the minority
seems to acknowledge that their environment
might not be suitable for applying the agile
process. Environments are not all the same and
when you start treating them in such a way, then
you eventually hit a bottleneck of inefficiency.

Different teams inside the same environment
behave and function in their own unique way and
that’s a fact. Teams are formed by individuals with
diverse experiences, habits, opinions and skills and
ideally all together should come in harmony. Only
then, you could talk about real productivity and
efficiency. Imagine now when on top of an already
very complex task (e.g. build team’s chemistry),
you try to apply a model called agile, the wrong
way. Disaster!

The question that logically arises now is what
does the wrong way mean in every occasion.
Obviously, there is no definite answer to that
question and it simply depends. There are so many
unique factors for each occasion, that would be at
least naive to generalize the answer. Nevertheless,
there are common mistakes made while applying
agile, which as a result lead to the misusage of a
model that was only meant to help and simplify.
It is at this point that someone should reconsider
the truth behind the ”quote” about theory and
practice, as it becomes priceless:

1. Unnecessary tools & Processes

As the manifesto states, agile is supposed to
favour personal interaction against tools and
processes. Most of the companies invest in very
expensive tools that are heavily used daily. A
very time consuming process that has no real
benefits (only capturing context), and it extremely
slows down development. Serious side-effects of
the usage of such tools: days or even weeks of
continuous planning for reviewing the captured
context, several hours spend for keeping context
up-to-date, multiple tools for the same purpose
and so on ...

2. Lack of architecture

Avoiding to document in thousand of pages
every single detail of the product’s architecture
is desired. It completely aligns with the agile
manifesto, which it instead proposes working

software. However, the manifesto does not state:
neglect documentation! A properly structured
document for capturing clearly the product
design and all the architectural requirements is a
fundamental ingredient if you want to build any
complex system that is scalable, extendable,
testable, easy-to-understand and offers maximum
levels of quality. Otherwise, you are just looking
at pieces of code that were forced to co-operate
successfully.

3. Defined roles & Hierarchies

Although agile sets the principles of customer
collaboration and responding to changes, wisely
avoids to explicitly define the roles and the
hierarchies, which will be required to achieve
these two goals. Someone could argue that the
process has already a defined structure for roles
and hierarchies, such as small scrum teams,
scrums-masters and tech-leads, but that is at
best inaccurate. These are just suggestions for
achieving certain goals and if they are proved that
they are indeed working on your environment,
then you probably should adopt them. If not, you
need to define your own successful model of roles
and hierarchies, which will allow you to use agile
as a concept, rather as a strict process that you
have to blindly follow. Using the suggested roles,
hierarchies, tools and processes for being agile,
does not make you agile. You need to respect the
agile manifesto and find your way into it.

4. The illusion of control

There is the perception that applying the agile
model gives better control over other software
development processes and makes things easier
to manage. That is only partially true, as it
assumes that agile process is not broken or
misused. Therefore, most of the time it gives
the illusion of a fine grained control, which only
adds an incredible overhead on the development
lifecycle, with no meaningful value. Certainly
you get all those nice to have, but no product
life threatening control metrics. At this stage
someone should really wonder, if the Fibonacci
numbers for sizing, the burn down charts, the
special templates for the definition of done, the
time consuming planning sessions and having 8
different states for a defect, are the mechanisms
for controlling better the development. I doubt!

5. Decision making & Consequences

Agile manifesto does not mandate any specific

2



approach for decision making. Nevertheless, the
responding to changes principle, requires someone
to continuously determine the priorities and the
absolute necessities for the product. If someone
is desperately changing the decisions based on the
customer’s input, third party dependencies and
commitments for new feature enhancements, it is
likely to fail. Allowing a certain level of flexibility
is desired, but it should be always inside the feasible
boundaries of the team’s capacity and what it
can be delivered without accepting any significant
trade-offs that they risk to harm the final product.
Therefore, someone should have the authority
to simply say no to changes when needed,
while weighting all the potential consequences. A
product delivered on-time, fully working, feature
complete (initial commitments is the metric) is
much better, than a product overloaded, delayed,
with a higher risk for lower quality.

3 Non-agile real life examples

Agile is overrated most of the time, if not all of
the time. It is treated as the magician that will
transform a software development lifecycle, make
things go faster and organize everything, while
at the same time is expected to be the reason
for delivering a great final product. Anyone that
believes that, has already failed. It’s like believing
that a guitar will make you a musician, an exploit
a hacker, a cooking book a chef, a treadmill a
runner and so on ... It definitely takes more
than that, and at the end you might discover that
you do not need a guitar in order to be a musician
or an exploit to be a hacker or a cooking book to
be a chef or a treadmill to be a runner.

Facts are very simple. If someone can respect
and successfully adopt the agile manifesto
principles into any software development process,
then the process is consider by definition agile.
The ways that you achieve the agile objectives
should not really matter and in fact they should
be different across companies or even teams, if
you want to talk about an original and healthy
software development lifecycle.

It does not take much effort to look around
you and realize that there are other systems that
serve similar purposes, target similar goals, face
similar challenges, but at the end of the day have
nothing to do with software development. Let’s
take as an example any team sport. In all
professional teams there is an absolute hierarchy
of roles, including: team owner (s), managers,
players, scouters, assistant managers, trainers,
assistant-trainers, general staff, marketing people,

etc... By analysing their environments you could
easily see a very close resemblance, that reflects
into roles and hierarchies up to goals, processes,
customers and profits.

There are other examples with certainly more
structured models, such as military or hospitals
units. Although these models have extremely
strict policies due to the critical nature of
the services that they provide, they also hide
exceptional processes for decision making and
task prioritization. Obviously, these environments
are not directly comparable with a software
development lifecycle, but they could certainly
be considered as additional food for thought for
improving models that are related to software
development.

Going back to the team sport model analysis,
by diving into the details we could easily
highlight some quite important differences.
The philosophy that underlies professional
sports clubs (for example a basketball team)
focuses on similar objectives, but the logic
and the established authorities are distinct.
Communication, responsibilities, decision making,
success, failure, consequences, feedback, training,
tactics, recruitment, profit, marketing, budget,
facilities, equipment, roles, hierarchies, evaluation,
and competition are mirroring back to software
development, almost identically. However, there
is no agile and these systems can still deliver the
expected results. Interesting!

1. A single person for final decisions

Behind every successful team, there is almost
always a great coach. He is the center of all
decision making, the single point of authority and
contradicting with him, simply does not exist.
In return, he has to build a team of winners,
report back to the owners, inspire, communicate, re-
consider, enforce and at the end of the day make the
players believe. He must become the psychologist
for his team and it’s owners. There is no easy way
out. The coach will have to possess the highest
of technical depth and the type of background
that will allow him to easily gain the respect of
everybody within the team, in a few days. Then,
trust and team chemistry will follow, resulting into
relationships with the strongest baseline and with
no unnecessary doubts.

In return, he is the first to blame if something
goes wrong and and the one that has to tolerate
and defend all the judgemental press during his
leadership. Extreme pressure and responsibilities,
with only desire to be acknowledged as the main
contributor for the team’s success. Certainly not

3



a position that everyone is capable to handle and
probably the most critical role in the entire
team structure. A coach should have the ability
to keep relationships at professional levels as
appropriate and evaluate situations accordingly.
Obviously, he does not have a comfort zone, he
is accountable for the team’s performance, he is
the guardian of a fragile balance and it is usually
an all or nothing deal.

2. Players are in control

Players can win or lose a game. They are
the ones that make the calls inside the field and
therefore, they are definitely considered to be the
ones in control. Players are identified as the
second most valuable asset of the product and
together with the fans, which are indisputably the
first asset, they create the sport. In an ideal system,
someone could easily argue that these two assets
are sufficient to complete a profitable system that
targets sports entertainment. Interesting enough,
the players form their own informal structure (e.g.
team’s captain), which allows them to function
better under a light hierarchy model. The right
or charismatic coach must be able to successfully
integrate with that internal hierarchy and earn its
respect, as he drives the entire team into success.
Anything less would simply be an average effort !

3. Fans have the power

Without the fans, professional players, profitable
sports or team owners would not exist. Sports
entertainment is just another heavy industry,
that depends on satisfied sports fans. The main
priority is the fans and observing sometimes their
unified power is simply amazing. That kind of
power is the one that can drive industry changes,
demand the re-construction of an entire team or
conclude that a team was successful even if it did
not achieve all the yearly objectives. Therefore,
it constitutes a fundamental requirement to be
able to respect, understand, use, but not be
afraid of that power. Every coach and his players
should move into that direction every single day,
anything else constitutes an overhead.

4. Evaluation is a continuous process

Every highly competitive environment requires
strict evaluation processes in place. In particular,
sports teams treat evaluation as a very critical
aspect of their system. Players are judged based
on their performance and their overall behaviour.
Coaches are criticized for their tactics or roster

decisions and team owners are expected to spend
the maximum budget for the team. Every single
game is like a new evaluation test for everybody
to pass. Repeated failures to rise against the
expectations, will eventually result to substitution.
There is no paperwork and all the assessment
happens real-time, based on the deliverables.

5. Distinct duties based on skills

Successful teams are build on top of extremely
diverse players. These players were hired in
order to fulfil the requirements for a specific
position inside the team, and that’s what they
know to do best. Their role must be strictly
defined, because their performance completely
depends on that factor. It is unlikely to see a
defender to be placed on an attacker’s position or
a play-maker to have to cover the position of the
center. That would be at best inefficient and it
should never happen. At least not in any serious
professional team that has a reasonable coach.
As a result, team’s roster changes quite often
according to needs and expectations for the new
season. However, it is only under very extreme
occasions that the entire core-team is replaced.
That usually happens only if the team failed
terribly to achieve the planned objectives. In
that case, the whole team is anyway under serious
re-construction and everything is redefined. Even
then, defining the new roles among members of
the team should be based strictly on the players
qualifications and experience. You do not try to
create players. You know what you need and you
get the experienced players to perform for the team.

6. Wins come game by game

Whoever believes that the reason behind great
teams lies only under infinite budget, modern
facilities and an enormous population of fans has
been probably misled to a wrong direction. These
are significant factors, but constitute only the ”fuel
for the engine”. What makes sports teams a
very interesting example is that they treat each
game as a stand alone challenge, with ultimate
goals: to win, improve, learn from their mistakes
and understand their opponents. That is their
manifesto principles.

They will not rush or force situations, they will
mature game by game and they will connect
to each other via practice. That allows quality,
discipline and communication to come as natural
result of hard work. The coach is responsible to
drive the team into that path. If that doesn’t
happen, most likely the team will end up like a

4



boat without a captain, waiting to sink at the first
bad weather. The efforts must be synchronized,
well-defined, locked-down, targeting only short-term
commitments within the team’s capabilities.

4 The MAD model

The main purpose behind the Manager,
Architect, Developers (MAD) proposal is not
to create a new software development methodology
or replace methodologies that already exist and
are used for decades. The goal is to suggest
a very strict core-baseline around hierarchies,
communication, responsibilities, team structuring
and evaluation. All these fundamental ingredients
tend to be neglected, over-complicated or simply
disappear when companies develop software under
pressure. It is strongly believed that the lack of
a clear policy that defines the minimal procedures
around any chosen methodology, constitutes
the Achilles’ heel of these environments.

Inspired from systems such as the one of
professional sports clubs, the paper brings some
different ideas under consideration. It presents
a certainly more aggressive model with respect
to the desired team structure and it tries to
leave out all the unnecessary time consuming
luxuries. However, at the same time it argues
how that aggressiveness could benefit the overall
development process by minimizing the overheads,
simplifying the decision making and granting
authority and control to the roles required.

4.1 The Hierarchy

Each team is formed by only one Manager and
only one Architect. They have the same level of
authority and they are the only ones that can make
the final calls in the part that they own. Both
of them are reporting to the same Director, who
acts as the product owner and overall supervisor
for the entire progress. In particular, the Manager
owns the non-technical, business oriented side of
the product, together with the career development
for all the involved Developers. The Architect owns
the solution and the developed features and he has
full control of the entire development team. At
the core of the team is a mix of Senior and Junior
Developers that their combined skills are able to
ensure on-time deliverables (see Figure 1).

4.1.1 The Director

He interacts directly with the Manager and the
Architect of the team and he is responsible for their

career paths. He has the ability to overwrite
decisions that were taken at lower levels, but at
his own risk. In practice, he is continuously
aware of the overall development status and has
visibility only to very important obstacles that
arise. Everything else remains quite transparent
at his level. He can be seen as the equivalent of the
sports team owner.

Figure 1: The hierarchy

4.1.2 The Manager

He is accountable for ensuring revenue growth,
establishing valuable customer and third-party
collaborations, driving developers career path,
marketing, branding and competitors analysis. In
practice, the manager is the person that leads
the business aspects of the product. He interacts
directly with the Architect for synchronizing the
commitments of the team, release dates and other
mandates and he reports back to the Director.

Nevertheless, he never interferes directly with
the development process, any technical decisions or
even the chosen software development methodology.
These decisions belong to the Architect and the

5



Developers. In that way, all the responsibility for
the technical side of the product is delegated into
the overall development team, which now has all
the freedom for increasing productivity, efficiency
and quality, any way it believes that works best,
with no restrictions!

4.1.3 The Architect

He is the equivalent of the coach in a sports
team. He is the owner of all technical decisions
related to the product and has the authority
to refuse any changes that could downgrade
the quality of the product or change the initial
planned schedule for deliverables. Indisputably,
the Architect constitutes the mastermind of the
product, the key figure for decision making and
he is challenged to prove that he can achieve all
the desirable objectives. He has an extremely
technical background with many years of software
development in his career and he is closely related
to the product area that he works.

The MAD model considers that the one to one
mapping with the role of a coach is incredible.
Therefore, the Architect is granted full-control
over his team. He has the ability to choose,
replace or move around Developers under his own
terms. In return, he is fully accountable for the
performance of the team and the product features
delivered. The Architect communicates directly
with Director and the Manager for all the higher
level decisions. At the same time, he interacts
daily with all the Developers of the team, while
he takes seriously and discusses all the technical
advices that are coming from his Developers.

4.1.4 The Developers

Highly skilled and talented individuals, that can
communicate well and tackle together all kind
of technical challenges that arise during software
development. The majority of the team must be
formed by senior engineers with a very small pool
of junior engineers. All of them are willing to
work hard, perform and learn from each other.
It is very crucial that each member of the team
is motivated to be part of the targeted project
and enjoys working with all the used technologies.
Otherwise, the team creates weak links, which are
hard to balance.

Developers represent the equivalent of the players
in a sports team. They are in control as they build
the software and each of them has expertises around
a specific area. Their knowledge is mandatory to
match as close as possible the tasks that they are
assigned. In the MAD model, Senior Developers

are required to mentor continuously at least
one junior member of the team. They become
responsible for his performance and his deliverables,
as part of their senior duties. Developers follow
a hierarchy based on seniority and only via that
hierarchy they are able to propagate requests to
the Architect, Manager or Director, when and if
needed.

4.2 Communication levels

Usually, communication levels are a mix of
confusion and they tend to be mistreated inside a
software development process. The majority of the
companies are victims of an irrational phenomenon,
on which different teams struggling to synchronize
actions and dependencies for achieving common
goals, but with no real effect. The problem appears
so often that is almost impossible to fix, unless
the communication hierarchies are redefined from
scratch.

Figure 2: Communication levels

The delegation of responsibility to people with
no real authority, while there is the expectation
from them to define a common direction among
teams is at best pointless. If everyone can
submit a requests against Team B and anyone
can receive a request from Team A at all levels,
without any restrictions, then a chaotic model
defines communication. Although chaotic models
have there own amazing order, and that’s why

6



actually companies sometimes succeed to deliver a
product, that order is not optimal for software
development. In these situations, there is no
co-ordination, no accountability, changes are hard
to track, architecture remains a virtual concept
and dependencies across teams become a daily
nightmare.

Therefore, by having as pre-requisite the MAD
hierarchy, the MAD model suggests a system for
communication that is based on formal ranking,
similar to the military system. The roles that
people have inside the company they now start
having real power and meaning. They actually
define to which people are able to talk directly
from another team. The communication happens
progressively in a bi-directional trend from lower
to upper layers and vice versa. As long as there
is no agreement at any level, the information is
passed to the different rankings, until it reaches
the highest ranking (e.g. Director), who decides
the final actions. In combination with the proposed
MAD hierarchy, the communication levels are now
structured and clear (see figure 2).

4.3 Building teams

MAD contradicts the perception that having a
scrum team is always the equivalent of having an
efficient or productive team. The reason is that
scrum teams are usually lacking of the absolute
authority for decision making and although their
size supposed to be small, in practice that is
only a virtual concept. When a team is not
autonomous, shares responsibilities and complex
dependencies with other teams and it does not
have a dedicated Architect and Manager, then
the team considers to be abstract. Accountability
is lost in the process, synchronization becomes
difficult to manage and cross-scrum communication
introduces bottlenecks.

In an attempt to minimize the obvious overheads,
the MAD model proposes the autonomous
teams. The fundamental difference is that in order
to form a new autonomous team, a number of
basic requirements must be first satisfied. These
requirements will help to improve accountability,
control over dependencies and communication
across teams.

4.3.1 Basic requirements

Each created team must have a very small size,
no more than 7 people, including the Architect
and the Manager. The deliverables of the team
are distinct and as independent as possible from
the ones of any other team. Even if that

independence is not always possible, the overall
architecture of the product must have as a goal
to design self-contained and re-usable components,
with minimum hard links. Only then, these
components could be distributed across different
teams for being implemented, without any strong
bindings. Potentially, these teams could be seen
as some kind of feature teams, but with complete
ownership of the feature, exclusive authority over
the feature and the absolute responsibility.

4.3.2 Recruiting process

The most important process for building a
team is the recruiting process. The criteria on
which you choose the members of a team is one of
the hardest, but also the most crucial tasks. The
selection must be done wisely.

Figure 3: Building a new team

In the MAD model the responsibility for
recruiting is very clear (see figure 3). The Architect
is the one that will have to choose the right
members for the team and build the team the way
he desires. In this effort, he could probably get
the advice of Senior Developers, but at the end he
has always the final call. The Manager will get
recruiting requests from the Architect. If it is a new
hire, the Manager will have to approve the budget.

7



Otherwise, if it is an internal moving the Manager
will have to arrange to move the Developer into his
new team, when that is possible.

The main difference against the usual process
of recruiting compared to the one described here,
is the fact that authorities and responsibilities
now have a dedicated owner. The impact for an
Architect if the team members are not sufficiently
qualified for the position will be enormous. It
becomes obvious that it is of the Architect’s main
interest to find the right people for the new team,
as he will be fully accountable for the end results.
The same way that a coach is for any sports
team. Therefore, by delegating the full control
of the recruitment process into the Architect, it is
strongly believed that the recruiting standards will
be raised accordingly.

5 Conclusions

This paper discussed the agile manifesto and
how companies usually misinterpret the core ideas
behind it. It argued that the agile practices should
not be considered as the one and only way to
develop software and it highlighted some of the
reasons. It described how other systems that do not
develop software function and it proposed a core-
baseline around that concept, called the Manager
Architect Developers (MAD) model.

Although, the suggested MAD model does not
constitute a new methodology, someone could
easily follow, adopt and build on top of that
minimal model. The simplistic structure of
hierarchies and the delegation of responsibilities
constitute a strong foundation for efficiency and
productivity. In conclusion, the intention of this
paper was to initiate a different way of thinking
around the software development process and
present an alternative, inspired mainly from other
environments.

References

[1] Manifesto for Agile Software Development
http://agilemanifesto.org/

[2] Principles behind the Agile Manifesto
http://agilemanifesto.org/
principles.html

8


