Security Service Granularity

by
Spyridon Antakis

October 19, 2008

Abstract

The paper will present Service-Oriented-Architecture
(SOA) as a possible solution to an IT strategy and
it will define service granularity. Furthermore, it will
define coarse-grained and fine-grained services from a
general perspective and from a security perspective.
Then, it will present a specific security problem and
it will give 2 possible solution scenarios using secu-
rity service-oriented approach. After the analysis of
the scenarios it will try to answer the following ques-
tions: Is it possible to strictly define security service
granularity? Is it better to use fine-grained or coarse-
grained security services? What are the advantages
and disadvantages in using the fine-grained security
services? Finally, it will conclude that security ser-
vice granularity will always depend on the specific
goal we want to accomplish each time. Different de-
sign approaches will have different impacts, including
always factors such as, reusability, cost and complex-
ity.

1 Introduction

1.1 Service Oriented Architecture

Referring to a Service Oriented Architecture (SOA)
system, we simple refer to a system that unifies busi-
ness processes by structuring large applications as an
ad hoc collection of smaller modules called services.
SOA is a new and popular paradigm of Information
Technology (IT) architecture style. It uses services
as building blocks to organize and architect the ap-
plications in an enterprise. There are several different
ways these services can be built, put together, and of-
fered. SOA simple divides the I'T support into compo-
nents in a way related to integration and rebuilding of
processes. Each component will have a very well de-
fined purpose and can be reused whenever functional-
ity of that kind is needed. A prerequisite is, however,

that the components are not integrated, or coupled,
in such a way that a change in component makes an-
other stop functioning; the components need to be
loosely-coupled. So, how loosely-coupled the compo-
nents must be and what must be the granularity level
of a component, in a security service architecture? In
general, SOA is an IT-architecture style that does
not have to follow any strict rules; is therefore not
tied to any particular programming languages, ven-
dor, product or standards body. It is only important
to realize that SOA services are a strict computer to
computer affair; humans do not enter data directly
into SOA services, but rather use some kind of in-
terface application which in return calls, one or more
SOA services. Each service take some kind of input,
does something with it, according to a set of rules
and produces some kind of output.[1][2][3]

1.2 Service Oriented Modeling Assets

Before moving on to the section that defines the ser-
vice granularity level, let first take an overall view of
the Service Oriented Modeling Framework (SOMF).
This work structure is chiefly a high-level map de-
picting the various components that contribute to a
successful service-oriented modeling approach. It il-
lustrates the major elements that identify the what to
do aspects of a service development scheme. These
schemes could be also considered to a security service
system architecture design. All three major forma-
tions that service-oriented modeling framework in-
troduces they could be applied also to the security
service approach and lead to well-defined service ori-
ented security systems.[4]

Atomic Service: An indivisible software compo-
nent that is too granular and executes fewer business
or technical functionalities. An atomic formation is
also a piece of software that typically is not subject
to decomposition analysis activities and its business
or technological functionality does not justify break-

down to smaller components. (Figure 1)

Composite Service: A composite service struc-
ture aggregates smaller and fine-grained services.
This hierarchical service formation is characteristi-
cally known as coarse-grained entity that encom-
passes more business or technical processes. A com-
posite service may aggregate atomic or other compos-
ite services. (Figure 2)

Service Cluster: This is a collection of distributed
and related services that are gathered because of their
mutual business or technological commonalities. A
service cluster both affiliates services and combines
their offerings to solve a business problem. A cluster
structure can aggregate atomic as well as composite
formations. (Figure 3)

Atomic Service

Figure 1: Atomic Service

Compasite Service

Figure 2: Composite Service

2 Service Granularity

2.1 What is Service Granularity

If we strictly define service granularity in terms of
functionality, then we refer to the breadth of func-
tionality each service encompasses, usually known as
the service abstraction level.[1] However, service gran-
ularity classification could be reflected in two other
different interpretations. In the terms of data gran-
ularity, that reflects the amount of data that is ex-
changed with a service and in terms of business value

Service Cluster

Figure 3: Service Cluster

granularity of a service, that indicates to which ex-
tent the service provides added business value.[4] In
this paper, we will only present service granularity in
terms of functionality. Service granularity generally
refers to the size of a service, but to strictly define
granularity is quite complex since it cannot draw on
theoretical groundings. Usually, for the description of
granularity of a service the terms coarse-grained and
fine-grained are used. Coarse-grained term is refer-
ring to systems of large components and fine-grained
to systems of small components. The fact that ser-
vices should be coarse-grained is often postulated as
a fundamental design principle of service oriented ar-
chitecture (SOA).[3] However, there will always be
a complexity restraint on how large the services can
be and still be manageable. Therefore, its not easy
to define an optimal size for a service, a considera-
tion about the complexity needed to be evaluated and
re-eavaluted many times, at different points. Hence,
service developers are forced to a trade-off in spatial
extent.

2.2 What is better, Coarse-grained or
Fine-grained Services

It is important to understand what is wrong with
building an SOA composed entirely of fine-grained
services or entirely of coarse-grained services. Using
LEGO blocks as a metaphor for SOA we will try to
illustrate the answer to this question. Implement-
ing SOA solely from fine-grained services is like try-
ing to build something only from the smallest LEGO
size possible, the 1x1 blocks with a single bump on
the top. Sure, each block has the right interface in
that you can connect it to other 1x1 blocks, but with
this approach it will be extremely difficult to build

anything. Similarly, if you think about having only
coarse-grained services, it would be like having a box
of LEGOs shaped like houses and cars. Sure, they
have bumps on them, and they do look like what you
want, but they are not particularly reusable, and they
are entirely useless for building anything other than
houses or cars. Thus, you need to have the appropri-
ate assortment of services ranging from fine-grained
to coarse-grained in order to address your particular
business problems.[8]

2.3 Service Granularity Matrix

At first view it might seem that all atomic services are
fine-grained and composite services coarse-grained,
this is not necessarily the case. Since granularity is a
measure of interaction and business appropriateness,
and atomicity is a measure of process decomposition,
it is quite possible to have coarse-grained atomic ser-
vices and fine-grained composite services. As a way of
explaining how this might come about, consider (Fig-
ure 4). Evaluating this matrix, one could have coarse-
grained services that are in fact atomic because there
no way to decompose them further. Perhaps they
originated from a mainframe and the lowest level of
granularity you can get is still too coarse. This does
not make the service composite. Likewise, consider a
case where a service has been built to provide a small
part of a large interaction, and in this consideration
it is fine-grained, yet the service itself is composed of
other services at the same level of fine granularity.
This might especially be the case in situations where
the services are supporting business processes in mul-
tiple contexts, such as fine-grained telephony services
that are themselves composed of atomic services ex-
posed from legacy assets. The chart also implies that
fine-grained services are highly reused, but this is not
really always the case, just as coarse-grained services
are not guaranteed to be business oriented. One can
even argue that while fine-grained services may be
more reusable, if they're too fine-grained, that re-
duces their reusability, because they might tend to
have too narrow use, just as services that are too
coarse-grained are so constrained.[9)]

3 Security Service Granularity

3.1 In General

According to SOA philosophy, applications can not
be in charge of security because traditional ap-

" Fine.Grained, Elmnic Se ned,
— L Atomic Services FV
2 F Highly Reused Busmess-gnenfcd
2L Infrastruclural Cften from ’
E|E legacy
2IE
=L
DIE
F FineGrained, Coarse-Grained,
| [Eomposite Services |[Composite Services
o Highly Reused Business-omanted,

Process-dmen Process-drven

wright & 2007 FapThink LLC

| Service Granulanty |

Figure 4: The Service Granularity Matrix

proaches to security are no longer sufficient enough.
Barriers may be good for security, but they get in the
way of businness. That does not mean that security
can be compromised to meet the business goals. Tra-
ditional security approaches assumed and took ad-
vantage of barriers, but the SOA is lowering of tradi-
tional barriers to reuse- application boundaries, tech-
nology boundaries and enterprise boundaries. Thus,
security has to be implemented through services with
a way that will keep services as open as possible and
easy to use. The idea of a security is in some ways
similar to the idea of an application service and in
some ways different. Like an application service ,
a security service should be usable by any applica-
tion; technology differences should not be a barrier.
This different approach of implementing security is
the source for many questions, that probably have
more than one answer. In our case, some interest-
ing questions would be, are the security concerns the
same?, are we able to define an optimal security ser-
vice granularity level?, what kind of restrictions we
will face and what are the advantages and disadvan-
tages for using different security service granularity
level?

3.2 Security Concerns

We can classify security concerns into two groups: a)
Functional aspects of security and b) Nonfunctional

aspects of security. Functional aspects of security are
standard in the sense that they exist even with tra-
ditional applications as well. In comparison with the
nonfunctional aspects of security which are nonfunc-
tional in the sense that they do not directly relate
to security. Instead, they are required to make sure
that a security solution works well in enterprise set-
ting. Below, we briefly present the security concerns
of those two groups.[10]

3.2.1 Functional Security Concerns
o Authentication - Verifying identity of users.

e Authorization - Deciding whether or not to per-
mit action on a resource.

e Data confidentiality - Protecting secrecy of sen-
sitive data.

e Data integrity - Detecting data tampering and
making sure neither the sender nor the receiver
can deny the message they sent or received.

e Protection against attacks - Making sure attack-
ers do not gain control over applications.

e Privacy - Making sure the application does not
violate the privacy of the users.

3.2.2 Nonfunctional Security Concerns

e Interoperability - This concern is specific to SOA,
where different security solutions must not break
compatibility of services that are otherwise com-
patible.

e Manageability - This concern is bigger for SOA,
as a security solution needs to protect many dif-
ferent services.

e Data confidentiality - This concern is common
for any security solution. Either for SOA or for
traditional application development, the com-
plexity reduces adoption of any security solution.

3.3 Coarse-grained Security Services
vs Fine-grained Security Services

Previously, (in section 2), we presented the LEGO
metaphor example trying to explain and make it eas-
ier for the reader to understand, that is not always
possible to decide if it is better to use coarse-grained
services instead of fine-grained services or the other
way around. So, as we are trying to look services from

the security perspective, the same philosophy applies
to coarse-grained security services and fine-grained
security services. In order to define the security ser-
vice granularity level of a system and whether it is
better to use coarse-grained security services or fine-
grained security services, we will have first to con-
sider and evaluate factors, such as: the scope of the
system,what is the goal, who has the goal and how
high or low-level is that goal.[5] After all, "No one
view is best for all”, and no security volume fits ev-
ery organization and it is up to organization’s view
on security IT-Infrastructure to set the bounds.[6] In
order to achieve this, some major inhibitors will have
to be considered in the designing process, such as,
incompatibility of different computers, operating sys-
tems and application standards, different data defini-
tions and different technical standards in several ap-
plications and in various parts of the organization.[6]

4 Presentation of a specific se-
curity problem

4.1 Why a specific security problem

In order to understand better the impacts of using
the security service approach, this paper analyzes a
specific security problem and gives possible solution
through different scenarios. Why a specific problem?
The reasons for using a specific problem, were already
explained in a way (in section 3.3). It is impossible
to define security service design the same way for ev-
ery problem, each problem will be approached and
solved with different criteria, depending always on
the goals of the security system. Thus, the conclu-
sions, the impacts and the considerations for imple-
menting the security service system, will be different
for each problem. The goal of this paper is to make
the reader understand and evaluate some possible im-
pacts of a security service approach, by analyzing a
specific security problem.

4.2 Description of the problem

Imagine, an enterprise company that develops soft-
ware applications.This company has three different
departments developing software applications that
customers are actual using. How the security service,
that is responsible for the authorization is going to be
implemented, coarse-grained or fine-grained? What
will be the actual impact of using different level of
security granularity. What are the advantages and

disadvantages in using each different scenario? Af-
terwards two scenarios will be presented as a possible
solution. Scenario A, as a coarse-grained approach
and Scenario B as a finer-grained approach. Both
of them will use a kind of role-based access control.
Those two scenarios will be over simplified and that
because they are intending only to make the reader
think and evaluate some of the constraints. It is sure
that real life IT security problems are more complex
and more difficult to analyze.

4.3 Scenario A

4.3.1 Analysis

®®

Admin/root

Group B o

Server
A

Authorization Tables

Figure 5: Scenario A

In scenario A, we implement authorization through
a security service called Are_You_Auth(). In terms
of functionality, this is a very coarse grained service
because, it can check usernames and passwords, it
checks access rights and it grants access rights. The
prototype of this service is the following,

e Are_You_Auth(user, pass, role, app).

So, if developers, customers or admin/root want
to access an application then they must use the se-
curity service Are_You_Auth() and give the proper
input: name, password, role (customer,admin, devel-
oper) and the application they want to have access.
After that, the security service will handle the request
and it will give access to the requester, but only with
the pre-configured role based assigned rights on the
specific application. If we make a hypothesis, that
admin/root must have the full rights' to every ap-
plication, developers must have the full rights only

1Full rights - having administration rights on the applica-
tion

on the applications they develop and a use right to
the others and that customers must have only possi-
ble use rights? , then we will have the following table
with role-based authorization. (Figures: 5 & 6)

Applications Adminfroot Developers Developers Developers Customers

GroupA GroupB GroupC X

App1 Full Full Use Use PD[SJS::]e
Rights Rights Rights Rights Rights

App2 Full Use Full Use PDlSJS;:]e
Rights Rights Rights Rights Rights

App3 Full Full Use Use PnlSJSsi:]e
Rights Rights Rights Rights Rights

App4 Full Use Use Full P”SS::]E
Rights Rights Rights Rights Rights

App5 Full Use Full Use PD[SJS::]E
Rights Rights Rights Rights Rights

App6 Full Use Use Full Poé.:‘:;]e
Rights Rights Rights Rights Rights

Figure 6: Scenario A - Authorization Table

4.3.2 Problems

If we look carefully in scenario A, we will realize that
there are some serious problems that this solution
have to deal with. There would be at least two lev-
els of granularity that we must take carefully under
consideration, the granularity of the functions of the
security service and the granularity of the role distri-
bution. Choosing to assign the users rights through
roles, will make also some other problems appear.
For example, what if one of the developers A must
have access and full rights on application 4, for de-
velopment reasons? That application is owned and
handled by developers C group, but developer A has
not this role, thus is not possible to have the full
rights. And how about a customer X that has the
use rights on an application, but needs also to inter-
act with that application, this will not be possible,
because the customers role has only use rights as-
signed. In general, we understand that using this
coarse-grained security service to check the autho-
rization only based on roles, we will always depend
on the roles. If we want to have access on an applica-
tion with only a specific right, it is impossible. The
only solution is to create a different role or change
the rights assigned to an entire existent one, but this

2Possible use rights - may have may not have the use rights
on the application

is not efficient at all. And it becomes more com-
plicated, because until now we assumed that wuser
parameter should only refer to physical persons and
the ”app” parameter should only refer to system ap-
plications. What about other security services that
must use other security services? After all, that is
the case in SOA. For example, imagine another se-
curity service Crypto_Password() that decrypts or
encrypts the password that the Are_You_Auth() se-
curity service takes us an input, in order to make the
comparison with authorization tables data. Then,
the things could become really complex.

4.4
4.4.1 Analysis

Scenario B

—___Are You Auth()
Are_You_Auth_to_Use()

Are_You_Auth_to_Modify() |

Are_You_Auth_to_Delete()

Are_You_Auth_to_Build()

Figure 7: Scenario B

Group B

P&
:49 i
= GroupC

Authorization
Tables

In scenario B, we implement authorization through
four finer-grained security services that are aggre-
gated to the previous coarse-grained security service
which scenario A used. So, the security services used
now are,

e Are_You_Auth_to_Use()

e Are_You_ Auth_to_Modify()
e Are_You_Auth_to_Delete()

e Are_You_Auth_to_Built() and
e Are_You_Auth()

The prototypes of the 4 new services are the fol-
lowing,

e Are_You_Auth_to_Use(user, pass, app)

e Are_You_Auth_to_Modify(user, pass, app)

e Are_You_Auth_to_Delete(user, pass, app)

e Are_You_Auth_to_Build(user, pass, app)

for the Are_You_Auth() security service the pro-
totype is the same

e Are_You_Auth(user, pass, role, app)

Now, if developers, customers or admin/root want
to access an application they could use the security
service Are_You_Auth() and give the proper input:
name, password, role (customer,admin,developer)
and the application they want to have access. Then
a check based on their role will be performed and
they will have access with role based rights. But
now, also they could use one of the finer-grained
security services to have only a specific permission
right on the application, giving as input only: name,
password and the application they want to have the
access. In this way they will have the right to
use, modify, delete and build an application with-
out having the full rights. Thus, as an example a
developer A could make use of the security service
Are_You_Auth_to_Build() so that he has autho-
rization in building an application for developers C
without however to have the full rights on this ap-
plication or to change his role. Another example
could be, a customer that makes use of security ser-
vice Are_You_Auth_to_Modify() in order to have
authorization for interaction with an application but
again without been assigned to a new role.

4.4.2 Problems

In scenario B, the numbers of security services in-
creased, and a finer-grained approach was presented.
Nevertheless, also in this approach there are several
problems left, that need to be solved. First of all,
we may have solved the limitations of the autho-
rization checks that were made only in a role based
way, but still a consideration must be made about
how the rights are going to be assigned beyond the
role based approach. Also, maybe some restrictions
must be applied in the use of the new aggregated se-
curity services, because the use of the one it could
be meaningless without the right to use the other.
For example, if a developer has the authorization to
use security service Are_You_Auth_to_Build() will
probably need also the right to use security service
Are_You_Auth_to_Modify() on that application.

5 Conclusions

It is not 100% clear how we can define security ser-
vice granularity in a general way. Different views have
different impacts on performance, reusability and cost
for Enterprise Companies. Measure will always apply
in relation to the security services and to the num-
ber of interactions required to accomplish a specific
goal. From a general point of view, we can say that
fine-grained security services are better than coarse-
grained. We should have in mind that building a
security system from fine-grained security services is
more complex, expensive and dififficult, but there will
always be a high-level of reusability in return. From
the other side, building a security system from coarse-
grained security services maybe is easier, cheaper and
less complex, but there will always be an important
lack of reusability. If they were no constraints about
the time, the money and the actual effort of design-
ing, modeling, and implementing a security system,
then some of the disadvantages that appear with the
fine-grained approach, would not really matter so
much. Unfortunately, in the real world that is impos-
sible. Time, money and effort will always be factors
that will have to be taken under a serious considera-
tion.

References

[1] Pierre Reldin, Peter Sunding, (2007), ”Explain-
ing SOA Service Granularity”, Linkping Univer-
sity.

[2] Szyperski C., (2003), ”Component Technology
- What, Where, and How?”, Proceedings of the
25th International Conference on Software Engi-
neering.

[3] Raf Haesen, Monique Snoeck, Wilfried Lemahieu
and Stephan Poelmans, (2008),”On the Defini-
tion of Service Granularity and Its Architectural
Impact”

[4] Michael Bell, (2008),”Service-Oriented Model-
ing: Service Analysis, Design, and Architecture”

[5] Cockburn A., (2001),” Writing Effective Use
Cases”, Boston: Addison-Wesley cop.

[6] Weill P., Broadbent M. (1998),” Leveraging The
New Infrastructure”, Boston: Harvard Business
School.

[7] Anderson B., Hagen C., Reifel J., Stettler E.
(2006), ”Complexity:customization’s evil twin.
Strategy and Leadership”, 19-27.

[8] ZapThink::Service-Oriented — Architecture FEzx-
pertise, Advisory, and Influence "Right-
Sizing Services” by Ronald Schmelzer,

http://www.zapthink.com/report.html?id=
ZAPFLASH-20051115 (Accessed on: 02/10/2008)

[9] ZapThink::Service-Oriented — Architecture FEx-
pertise, Advisory, and Influence ”The Service
Granularity Matrix” by Ronald Schmelzer,
http://www.zapthink.com/report.html?id=
ZAPFLASH-200783 (Accessed on: 02/10/2008)

[10] Kanneganti R., Chodavarapu P. (2008), ?SOA

Security”, '"Manning’

